Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Publication year range
1.
Rev. colomb. biotecnol ; 13(1): 42-51, jul. 2011. graf, ilus, tab
Article in Spanish | LILACS | ID: lil-600572

ABSTRACT

Los modelos experimentales en rata han sido de gran utilidad en las evaluaciones terapéuticas o de reemplazo de células en enfermedades neurodegenerativas. Se ha comprobado que las células de la médula ósea (CMO) de ratas pueden diferenciarse en células que no forman parte de sus linajes normales. Hay evidencias de estos procesos de trans-diferenciación, pero aún no se conocen los mecanismos moleculares que activan estos procesos. El propósito de nuestro trabajo fue estudiar el polimorfismo genético del ADN de los tipos celulares que conforman las CMO y las células del sistema nervioso central (SNC), estríatales y de la corteza de ratas mediante la técnica de RAPD. Las CMO, las células mononucleares (CMMO), las células estromales (CEMO) y las del SNC fueron obtenidas de ratas, y su ADN genómico fue purificado y amplificado mediante la técnica de RAPD, utilizando 15 cebadores al azar. Se construyó un dendograma de las bandas de amplificación generadas utilizando el método de UPGMA. Las células estudiadas según el análisis del RAPD quedaron en 2 grupos bien definidos, pudiéndose diferenciar las CEMO del resto de las células estudiadas. Los cebadores OPA-6, 7 y 12, mostraron el polimorfismo genético de los linajes de células estudiadas. Mediante la técnica de RAPD se demostró la variabilidad genética entre las CEMO y las CMMO, células estriadas y de corteza que mostraron una homogeneidad genética, proponiéndose marcadores específicos de RAPD para cada grupo de células. Este es el primer estudio del polimorfismo genético de las CMO y del SNC de ratas.


Experimental models have been of grate usefulness in the therapeutic or replacement cells in neurodegenerative diseases. It has been demonstrated that bone marrow cells (BMC), can be difefferentiated in cells that do not form part of their normal lineage. There is evidence of these trans-differentiation processes in these cells, but nevertheless, molecular mechanisms that activate these differentiation process still not known. The purpose of our work was to study the genetic polymorphism of those cellular types; that conform the rat bone marrow cells (BMC) as well as those of the central nervous system (CNS), striatum cells and cortex ones, trough RAPD technique. BM, mononuclear cells (BMMC), estromal cells (BMSC) and the CNS cells were obtained from rats and genomic ADN was purified and amplified through RAPD technique, using 15 random primers. A dendogram was constructed according to UPGMA method of the amplifying RAPD bands. Studied cells as- according to the RAPD analysis- were grouped into 2 well- defined groups, as CEMO coud be differentiated from the rest of studied cells. OPA-6, 7 and 12 primers showed the genetic polymorphism of the studied lineages cells. Also will be proposed specific RAPD genetic markers. Through RAPD technique permitted the genetic variability was demonstrated betwen BMEC and BMMC of striated cells and of cortex, which demonstratd a genetic homogeneity through RAPD technique so specific genetic markers of RAPD were thus propose for each group of cells. These constitute the first study on genetic polymorphism of BMC and CNS.


Subject(s)
Bone Marrow/abnormalities , Bone Marrow/growth & development , Bone Marrow/immunology , Bone Marrow/ultrastructure , Polymorphism, Genetic/physiology , Polymorphism, Genetic/genetics , Random Amplified Polymorphic DNA Technique , Central Nervous System/abnormalities , Central Nervous System/injuries , Central Nervous System/metabolism , Central Nervous System/microbiology , Central Nervous System/ultrastructure
2.
Med Sci Monit ; 15(2): BR47-54, 2009 Feb.
Article in English | MEDLINE | ID: mdl-19179961

ABSTRACT

BACKGROUND: Bone marrow-derived stem cell transplantation is a potentially viable therapeutic option for the treatment of neurodegenerative disease. MATERIAL/METHODS: We have isolated bone marrow stem cells by standard method. We then evaluated the survival of rats' bone marrow mononuclear cells implanted in rats' brain. The cells were extracted from rats' femurs, and marked for monitoring purposes by adenoviral transduction with Green Fluorescent Protein (GFP). Labeled cells were implanted within the area of rats' striatum lesions that were induced a month earlier employing quinolinic acid-based method. The implants were phenotyped by monitoring CD34; CD38; CD45 and CD90 expression. Bone marrow stromal cells were extracted from rats' femurs and cultivated until monolayer bone marrow stromal cells were obtained. The ability of bone marrow stromal cells to express NGF and GDNF was evaluated by RT-PCR. RESULTS: Implanted cells survived for at least one month after transplantation and dispersed from the area of injection towards corpus callosum and brain cortex. Interestingly, passaged rat bone marrow stromal cells expressed NGF and GDNF mRNA. CONCLUSIONS: The bone marrow cells could be successfully transplanted to the brain either for the purpose of trans-differentiation, or for the expression of desired growth factors.


Subject(s)
Bone Marrow Cells/cytology , Brain Tissue Transplantation , Brain/pathology , Graft Survival , Neurons/metabolism , Stem Cell Transplantation , Adenoviridae , Animals , Antigens, CD/metabolism , Biomarkers/metabolism , Gene Expression Regulation , Leukocytes, Mononuclear/virology , Male , Nerve Growth Factors/genetics , Nerve Growth Factors/metabolism , Quinolinic Acid , Rats , Rats, Sprague-Dawley , Staining and Labeling , Time Factors
3.
Biochem Biophys Res Commun ; 316(3): 753-4, 2004 Apr 09.
Article in English | MEDLINE | ID: mdl-15033464

ABSTRACT

Bone marrow stromal cells (BMSC) have attracted interest through their possible use for cell therapy in neurological diseases. Recent reports demonstrated that these cells are able to migrate and have potential for neuronal differentiation after transplantation into brain parenchyma. The objective of this work was determine whether rat BMSC express NGF and GDNF, in order to study its potential application for treatment of neurodegenerative diseases. BMSC were harvested from male rats and cultured in DMEM supplemented with 20% fetal bovine serum. At passage 6 the total RNA was isolated using TriZol reactive. RT-PCRs to evaluate the expression of NGF and GDNF using specific primers were carried out. Our results indicate that rat BMSC have potential to produce NGF and GDNF. We have not found any report in favor of GDNF or NGF production from rat BMSC.


Subject(s)
Bone Marrow Cells/metabolism , Nerve Growth Factor/biosynthesis , Nerve Growth Factors/biosynthesis , Stromal Cells/metabolism , Animals , Cells, Cultured , Glial Cell Line-Derived Neurotrophic Factor , Guanidines/pharmacology , Male , Phenols/pharmacology , Rats , Rats, Sprague-Dawley , Reverse Transcriptase Polymerase Chain Reaction , Solutions/pharmacology , Temperature , Time Factors
SELECTION OF CITATIONS
SEARCH DETAIL
...