Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Mar Environ Res ; 157: 104930, 2020 May.
Article in English | MEDLINE | ID: mdl-32275512

ABSTRACT

The distribution of macroalgal species along the north and northwest coast of the Iberian Peninsula is in a period of change, during which mostly cold-temperate species have decreased in cover and others have disappeared. On the other hand, other species have increased in abundance. These shifts could be related with the modification of environmental factors that determine species distribution caused by climate change. A standardised sampling methodology was applied at 18 sites along the north coast of Spain in 2011 and 2017. The relationship between the coverage of intertidal macroalgal species and abiotic variables (sea surface temperature, air temperature and significant wave height) was analysed in order to detect possible changes in the historical data. Results suggest a modification in the communities in the inner part of the Bay of Biscay, mostly related to an increase in water and air temperature. Each seaweed group (warm-temperate, cold-temperate, opportunistic and exotic species) showed a different pattern of modification. Coralline algae, Bifurcaria bifurcata and Cystoseira baccata have increased, which may be related to the warming trend. The exotic species Asparagopsis armata has also increased, particularly in the Lower Rias. On the other hand, there was a drastic decrease of the cold-temperate species Himanthalia elongata. Data obtained support the relationship of macroalgae species communities and environment in the context of climate change in this particular area.


Subject(s)
Climate Change , Phaeophyceae/classification , Rhodophyta/classification , Seaweed/classification , Spain
2.
J Environ Manage ; 205: 59-72, 2018 Jan 01.
Article in English | MEDLINE | ID: mdl-28964975

ABSTRACT

One approach to identifying and mapping the state of marine biophysical conditions is the identification of large-scale ecological units for which conditions are similar and the strategies of management may also be similar. Because biological processes are difficult to directly record over large areas, abiotic characteristics are used as surrogate parameters. In this work, the Mediterranean Sea was classified into homogeneous spatial areas based on abiotic variables. Eight parameters were selected based on salinity, sea surface temperature, photosynthetically active radiation, sea-wave heights and depth variables. The parameters were gathered in grid points of 0.5° spatial resolution in the open sea and 0.125° in coastal areas. The typologies were obtained by data mining the eight parameters throughout the Mediterranean and combining two clustering techniques: self-organizing maps and the k-means algorithm. The result is a division of the Mediterranean Sea into seven typologies. For these typologies, the classification recognizes differences in temperature, salinity and radiation. In addition, it separates coastal from deep areas. The influence of river discharges and the entrance of water from other seas are also reflected. These results are consistent with the ecological requirements of the five studied seagrasses (Posidonia oceanica, Zostera marina, Zostera noltei, Cymodocea nodosa, Halophila stipulacea), supporting the suitability of the resulting classification and the proposed methodology. The approach thus provides a tool for the sustainable management of large marine areas and the ability to address not only present threats but also future conditions, such as climate change.


Subject(s)
Alismatales , Ecology , Zosteraceae , Mediterranean Sea , Salinity
SELECTION OF CITATIONS
SEARCH DETAIL
...