Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
Med Image Comput Comput Assist Interv ; 14225: 704-713, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37841230

ABSTRACT

We introduce a new AI-ready computational pathology dataset containing restained and co-registered digitized images from eight head-and-neck squamous cell carcinoma patients. Specifically, the same tumor sections were stained with the expensive multiplex immunofluorescence (mIF) assay first and then restained with cheaper multiplex immunohistochemistry (mIHC). This is a first public dataset that demonstrates the equivalence of these two staining methods which in turn allows several use cases; due to the equivalence, our cheaper mIHC staining protocol can offset the need for expensive mIF staining/scanning which requires highly-skilled lab technicians. As opposed to subjective and error-prone immune cell annotations from individual pathologists (disagreement > 50%) to drive SOTA deep learning approaches, this dataset provides objective immune and tumor cell annotations via mIF/mIHC restaining for more reproducible and accurate characterization of tumor immune microenvironment (e.g. for immunotherapy). We demonstrate the effectiveness of this dataset in three use cases: (1) IHC quantification of CD3/CD8 tumor-infiltrating lymphocytes via style transfer, (2) virtual translation of cheap mIHC stains to more expensive mIF stains, and (3) virtual tumor/immune cellular phenotyping on standard hematoxylin images. The dataset is available at https://github.com/nadeemlab/DeepLIIF.

2.
ArXiv ; 2023 May 25.
Article in English | MEDLINE | ID: mdl-37292462

ABSTRACT

We introduce a new AI-ready computational pathology dataset containing restained and co-registered digitized images from eight head-and-neck squamous cell carcinoma patients. Specifically, the same tumor sections were stained with the expensive multiplex immunofluorescence (mIF) assay first and then restained with cheaper multiplex immunohistochemistry (mIHC). This is a first public dataset that demonstrates the equivalence of these two staining methods which in turn allows several use cases; due to the equivalence, our cheaper mIHC staining protocol can offset the need for expensive mIF staining/scanning which requires highly-skilled lab technicians. As opposed to subjective and error-prone immune cell annotations from individual pathologists (disagreement > 50%) to drive SOTA deep learning approaches, this dataset provides objective immune and tumor cell annotations via mIF/mIHC restaining for more reproducible and accurate characterization of tumor immune microenvironment (e.g. for immunotherapy). We demonstrate the effectiveness of this dataset in three use cases: (1) IHC quantification of CD3/CD8 tumor-infiltrating lymphocytes via style transfer, (2) virtual translation of cheap mIHC stains to more expensive mIF stains, and (3) virtual tumor/immune cellular phenotyping on standard hematoxylin images. The dataset is available at \url{https://github.com/nadeemlab/DeepLIIF}.

3.
Sci Adv ; 9(18): eadf0108, 2023 05 03.
Article in English | MEDLINE | ID: mdl-37134157

ABSTRACT

Immune checkpoint blockade has been largely unsuccessful for the treatment of bone metastatic castrate-resistant prostate cancer (mCRPC). Here, we report a combinatorial strategy to treat mCRPC using γδ-enriched chimeric antigen receptor (CAR) T cells and zoledronate (ZOL). In a preclinical murine model of bone mCRPC, γδ CAR-T cells targeting prostate stem cell antigen (PSCA) induced a rapid and significant regression of established tumors, combined with increased survival and reduced cancer-associated bone disease. Pretreatment with ZOL, a U.S. Food and Drug Administration-approved bisphosphonate prescribed to mitigate pathological fracture in mCRPC patients, resulted in CAR-independent activation of γδ CAR-T cells, increased cytokine secretion, and enhanced antitumor efficacy. These data show that the activity of the endogenous Vγ9Vδ2 T cell receptor is preserved in CAR-T cells, allowing for dual-receptor recognition of tumor cells. Collectively, our findings support the use of γδ CAR-T cell therapy for mCRPC treatment.


Subject(s)
Prostatic Neoplasms, Castration-Resistant , Receptors, Chimeric Antigen , United States , Male , Humans , Animals , Mice , Prostatic Neoplasms, Castration-Resistant/therapy , Zoledronic Acid/pharmacology , Receptors, Antigen, T-Cell , Cell- and Tissue-Based Therapy
4.
Lancet ; 400(10357): 1008-1019, 2022 09 24.
Article in English | MEDLINE | ID: mdl-36108657

ABSTRACT

BACKGROUND: Merkel cell carcinoma is among the most aggressive and lethal of primary skin cancers, with a high rate of distant metastasis. Anti-programmed death receptor 1 (anti-PD-1) and programmed death ligand 1 (PD-L1) monotherapy is currently standard of care for unresectable, recurrent, or metastatic Merkel cell carcinoma. We assessed treatment with combined nivolumab plus ipilimumab, with or without stereotactic body radiotherapy (SBRT) in patients with advanced Merkel cell carcinoma as a first-line therapy or following previous treatment with anti-PD-1 and PD-L1 monotherapy. METHODS: In this randomised, open label, phase 2 trial, we randomly assigned adults from two cancer sites in the USA (one in Florida and one in Ohio) to group A (combined nivolumab and ipilimumab) or group B (combined nivolumab and ipilimumab plus SBRT) in a 1:1 ratio. Eligible patients were aged at least 18 years with histologically proven advanced stage (unresectable, recurrent, or stage IV) Merkel cell carcinoma, a minimum of two tumour lesions measureable by CT, MRI or clinical exam, and tumour tissue available for exploratory biomarker analysis. Patients were stratified by previous immune-checkpoint inhibitor (ICI) status to receive nivolumab 240 mg intravenously every 2 weeks plus ipilimumab 1 mg/kg intravenously every 6 weeks (group A) or the same schedule of combined nivolumab and ipilimumab with the addition of SBRT to at least one tumour site (24 Gy in three fractions at week 2; group B). Patients had to have at least two measurable sites of disease so one non-irradiated site could be followed for response. The primary endpoint was objective response rate (ORR) in all randomly assigned patients who received at least one dose of combined nivolumab and ipilimumab. ORR was defined as the proportion of patients with a complete response or partial response per immune-related Response Evaluation Criteria in Solid Tumours. Response was assessed every 12 weeks. Safety was assessed in all patients. This trial is registered with ClinicalTrials.gov, NCT03071406. FINDINGS: 50 patients (25 in both group A and group B) were enrolled between March 14, 2017, and Dec 21, 2021, including 24 ICI-naive patients (13 [52%] of 25 group A patients and 11 [44%] of 25 group B patients]) and 26 patients with previous ICI (12 [48%] of 25 group A patients and 14 [56%] of 25 group B patients]). One patient in group B did not receive SBRT due to concerns about excess toxicity. Median follow-up was 14·6 months (IQR 9·1-26·5). Two patients in group B were excluded from the analysis of the primary endpoint because the target lesions were irradiated and so the patients were deemed non-evaluable. Of the ICI-naive patients, 22 (100%) of 22 (95% CI 82-100) had an objective response, including nine (41% [95% CI 21-63]) with complete response. Of the patients who had previously had ICI exposure, eight (31%) of 26 patients (95% CI 15-52) had an objective response and four (15% [5-36]) had a complete response. No significant differences in ORR were observed between groups A (18 [72%] of 25 patients) and B (12 [52%] of 23 patients; p=0·26). Grade 3 or 4 treatment-related adverse events were observed in 10 (40%) of 25 patients in group A and 8 (32%) of 25 patients in group B. INTERPRETATION: First-line combined nivolumab and ipilimumab in patients with advanced Merkel cell carcinoma showed a high ORR with durable responses and an expected safety profile. Combined nivolumab and ipilimumab also showed clinical benefit in patients with previous anti-PD-1 and PD-L1 treatment. Addition of SBRT did not improve efficacy of combined nivolumab and ipilimumab. The combination of nivolumab and ipilimumab represents a new first-line and salvage therapeutic option for advanced Merkel cell carcinoma. FUNDING: Bristol Myers Squibb Rare Population Malignancy Program.


Subject(s)
Carcinoma, Merkel Cell , Radiosurgery , Skin Neoplasms , Adolescent , Adult , Antineoplastic Combined Chemotherapy Protocols , B7-H1 Antigen , Biomarkers , Carcinoma, Merkel Cell/drug therapy , Carcinoma, Merkel Cell/radiotherapy , Humans , Immune Checkpoint Inhibitors , Ipilimumab , Nivolumab , Receptors, Death Domain , Skin Neoplasms/drug therapy , Skin Neoplasms/radiotherapy
6.
Thyroid ; 31(1): 36-49, 2021 01.
Article in English | MEDLINE | ID: mdl-32689909

ABSTRACT

Background:RAS gene family mutations are the most prevalent in thyroid nodules with indeterminate cytology and are present in a wide spectrum of histological diagnoses. We evaluated differentially expressed genes and signaling pathways across the histological/clinical spectrum of RAS-mutant nodules to determine key molecular determinants associated with a high risk of malignancy. Methods: Sixty-one thyroid nodules with RAS mutations were identified. Based on the histological diagnosis and biological behavior, the nodules were grouped into five categories indicating their degree of malignancy: non-neoplastic appearance, benign neoplasm, indeterminate malignant potential, low-risk cancer, or high-risk cancer. Gene expression profiles of these nodules were determined using the NanoString PanCancer Pathways and IO 360 Panels, and Angiopoietin-2 level was determined by immunohistochemical staining. Results: The analysis of differentially expressed genes using the five categories as supervising parameters unearthed a significant correlation between the degree of malignancy and genes involved in cell cycle and apoptosis (BAX, CCNE2, CDKN2A, CDKN2B, CHEK1, E2F1, GSK3B, NFKB1, and PRKAR2A), PI3K pathway (CCNE2, CSF3, GSKB3, NFKB1, PPP2R2C, and SGK2), and stromal factors (ANGPT2 and DLL4). The expression of Angiopoietin-2 by immunohistochemistry also showed the same trend of increasing expression from non-neoplastic appearance to high-risk cancer (p < 0.0001). Conclusions: The gene expression analysis of RAS-mutant thyroid nodules suggests increasing upregulation of key oncogenic pathways depending on their degree of malignancy and supports the concept of a stepwise progression. The utility of ANGPT2 expression as a potential diagnostic biomarker warrants further evaluation.


Subject(s)
Biomarkers, Tumor/genetics , Genes, ras , Mutation , Thyroid Neoplasms/genetics , Thyroid Nodule/genetics , Transcriptome , Adolescent , Adult , Aged , Angiopoietin-2/genetics , Female , Gene Expression Profiling , Gene Regulatory Networks , Genetic Predisposition to Disease , Humans , Male , Middle Aged , Phenotype , Retrospective Studies , Thyroid Neoplasms/pathology , Thyroid Neoplasms/surgery , Thyroid Nodule/pathology , Thyroid Nodule/surgery , Young Adult
7.
Am J Transl Res ; 12(2): 684-696, 2020.
Article in English | MEDLINE | ID: mdl-32194915

ABSTRACT

Head and neck squamous cell carcinoma (HNSCC) is an aggressive epithelial malignancy characterized by frequent mutations and metastasis. Long noncoding RNAs (lncRNAs) have been implicated in tumorigenesis and serve as novel prognostic biomarkers in different cancers. To enhance our understanding of lncRNAs that may have biological significance in HNSCC and may serve as prognostic biomarkers, we globally profiled lncRNAs in HNSCC by analyzing the RNA-seq data from The Atlas of Noncoding RNAs in Cancer (TANRIC) database. Of 3576 lncRNAs, we identified 926 (higher-688, lower-238) lncRNAs with a 2-fold abundance difference among the forty HNSCC and paired adjacent normal tissue. We investigated differential abundance of lncRNAs based on TP53 mutation and p16 status. We found 133 lncRNAs to have differential abundance by 2-fold among the mutant vs wild-type TP53 samples, whereas among p16-negative vs positive samples, we identified 710 lncRNAs with the same criteria. Meanwhile, analysis of the 15 most abundant lncRNAs in the tumor samples identified five lncRNAs whose higher abundance was associated with poor overall patient survival. Among these five, higher abundance of LINC00460 associated with poor patient survival in an independent cohort of 82 HNSCC patients. To further evaluate the potential function of LINC00460, we performed lncRNA-mRNAs co-expression analysis and found that higher abundance of LINC00460 associated with cancer-related biological pathways including EMT and other inflammatory response pathways. In summary, we report LINC00460 is more abundant in tumors compared to adjacent normal tissue and that it may serve as a potential prognostic biomarker in HNSCC.

8.
Clin Cancer Res ; 26(6): 1474-1485, 2020 03 15.
Article in English | MEDLINE | ID: mdl-31848186

ABSTRACT

PURPOSE: Patients with head and neck squamous cell carcinoma (HNSCC) who actively smoke during treatment have worse survival compared with never-smokers and former-smokers. We hypothesize the poor prognosis in tobacco smokers with HNSCC is, at least in part, due to ongoing suppression of immune response. We characterized the tumor immune microenvironment (TIM) of HNSCC in a retrospective cohort of 177 current, former, and never smokers. EXPERIMENTAL DESIGN: Tumor specimens were subjected to analysis of CD3, CD8, FOXP3, PD-1, PD-L1, and pancytokeratin by multiplex immunofluorescence, whole-exome sequencing, and RNA sequencing. Immune markers were measured in tumor core, tumor margin, and stroma. RESULTS: Our data indicate that current smokers have significantly lower numbers of CD8+ cytotoxic T cells and PD-L1+ cells in the TIM compared with never- and former-smokers. While tumor mutation burden and mutant allele tumor heterogeneity score do not associate with smoking status, gene-set enrichment analyses reveal significant suppression of IFNα and IFNγ response pathways in current smokers. Gene expression of canonical IFN response chemokines, CXCL9, CXCL10, and CXCL11, are lower in current smokers than in former smokers, suggesting a mechanism for the decreased immune cell migration to tumor sites. CONCLUSIONS: These results suggest active tobacco use in HNSCC has an immunosuppressive effect through inhibition of tumor infiltration of cytotoxic T cells, likely as a result of suppression of IFN response pathways. Our study highlights the importance of understanding the interaction between smoking and TIM in light of emerging immune modulators for cancer management.


Subject(s)
Head and Neck Neoplasms/immunology , Interferon-alpha/immunology , Interferon-gamma/immunology , Lymphocytes, Tumor-Infiltrating/immunology , Squamous Cell Carcinoma of Head and Neck/immunology , Tobacco Smoking/adverse effects , Tumor Microenvironment/immunology , Adult , Aged , Aged, 80 and over , Biomarkers, Tumor/immunology , Biomarkers, Tumor/metabolism , Chemokine CXCL10/metabolism , Chemokine CXCL11/metabolism , Chemokine CXCL9/metabolism , Female , Head and Neck Neoplasms/metabolism , Head and Neck Neoplasms/pathology , Humans , Lymphocytes, Tumor-Infiltrating/drug effects , Male , Middle Aged , Retrospective Studies , Squamous Cell Carcinoma of Head and Neck/metabolism , Squamous Cell Carcinoma of Head and Neck/pathology , Tumor Microenvironment/drug effects , Young Adult
SELECTION OF CITATIONS
SEARCH DETAIL
...