Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Plants (Basel) ; 12(13)2023 Jun 23.
Article in English | MEDLINE | ID: mdl-37446987

ABSTRACT

Phosphoenolpyruvate carboxylase (PEPC) plays central roles in photosynthesis, respiration, amino acid synthesis, and seed development. PEPC is regulated by different post-translational modifications. Between them, the phosphorylation by PEPC-kinase (PEPCk) is widely documented. In this work, we simultaneously silenced the three sorghum genes encoding PEPCk (SbPPCK1-3) by RNAi interference, obtaining 12 independent transgenic lines (Ppck1-12 lines), showing different degrees of SbPPCK1-3 silencing. Among them, two T2 homozygous lines (Ppck-2 and Ppck-4) were selected for further evaluation. Expression of SbPPCK1 was reduced by 65% and 83% in Ppck-2 and Ppck-4 illuminated leaves, respectively. Expression of SbPPCK2 was higher in roots and decreased by 50% in Ppck-2 and Ppck-4 in this tissue. Expression of SbPPCK3 was low and highly variable. Despite the incomplete gene silencing, it decreased the degree of phosphorylation of PEPC in illuminated leaves, P-deficient plants, and NaCl-treated plants. Both leaves and seeds of Ppck lines had altered metabolic profiles and a general decrease in amino acid content. In addition, Ppck lines showed delayed flowering, and 20% of Ppck-4 plants did not produce flowers at all. The total amount of seeds was lowered by 50% and 36% in Ppck-2 and Ppck-4 lines, respectively. The quality of seeds was lower in Ppck lines: lower amino acid content, including Lys, and higher phytate content. These data confirm the relevance of the phosphorylation of PEPC in sorghum development, stress responses, yield, and quality of seeds.

2.
Plant J ; 111(1): 231-249, 2022 07.
Article in English | MEDLINE | ID: mdl-35488514

ABSTRACT

Phosphoenolpyruvate carboxylase (PEPC) is a carboxylating enzyme with important roles in plant metabolism. Most studies in C4 plants have focused on photosynthetic PEPC, but less is known about non-photosynthetic PEPC isozymes, especially with respect to their physiological functions. In this work, we analyzed the precise roles of the sorghum (Sorghum bicolor) PPC3 isozyme by the use of knock-down lines with the SbPPC3 gene silenced (Ppc3 lines). Ppc3 plants showed reduced stomatal conductance and plant size, a delay in flowering time, and reduced seed production. In addition, silenced plants accumulated stress indicators such as Asn, citrate, malate, and sucrose in roots and showed higher citrate synthase activity, even in control conditions. Salinity further affected stomatal conductance and yield and had a deeper impact on central metabolism in silenced plants compared to wild type, more notably in roots, with Ppc3 plants showing higher nitrate reductase and NADH-glutamate synthase activity in roots and the accumulation of molecules with a higher N/C ratio. Taken together, our results show that although SbPPC3 is predominantly a root protein, its absence causes deep changes in plant physiology and metabolism in roots and leaves, negatively affecting maximal stomatal opening, growth, productivity, and stress responses in sorghum plants. The consequences of SbPPC3 silencing suggest that this protein, and maybe orthologs in other plants, could be an important target to improve plant growth, productivity, and resistance to salt stress and other stresses where non-photosynthetic PEPCs may be implicated.


Subject(s)
Phosphoenolpyruvate Carboxylase , Sorghum , Edible Grain/metabolism , Phosphoenolpyruvate Carboxylase/genetics , Phosphoenolpyruvate Carboxylase/metabolism , Salinity , Salt Stress , Sorghum/metabolism
3.
Arch Microbiol ; 200(8): 1191-1203, 2018 Oct.
Article in English | MEDLINE | ID: mdl-29881875

ABSTRACT

We investigated the effects of Azospirillum brasilense strains Ab-V5 and Ab-V6 in the induction of mechanisms of systemic acquired resistance (SAR) and induced system resistance (ISR) on maize (Zea mays L.) plants. Under normal growth conditions, the treatments consisted of the standard inoculation of cells at sowing, and leaf spray of cells or their metabolites at the V2.5 growth stage; under saline stress (170 mM NaCl), the treatment consisted of standard single and co-inoculation of A. brasilense and Rhizobium tropici. The main compounds in the Azospirillum metabolites were identified as indole-3-acetic acid (IAA) and salicylic acid (SA). Under normal conditions, A. brasilense cells applied at sowing or by leaf spray increased the activities of catalase (CAT), superoxide dismutase (SOD), and malondialdehyde (MDA) in leaves, and of ascorbate peroxidase (APX) in roots; however, interestingly, in general the highest activities were observed by leaf spray of metabolites. Under normal conditions, the highest levels of salicylic acid (SA) and jasmonic acid (JA) were achieved in leaves by leaf spray of metabolites, of SA in roots by leaf spray of cells, and of JA in roots by standard inoculation and leaf spray of metabolites. Under saline stress, plant protection occurred via SA and abscisic acid (ABA), but not JA. In general, inoculation resulted in further increases in SA in leaves and roots, and ABA in leaves. We hypothesize that A. brasilense confers protection to maize plants by simultaneous induction of JA and SA pathways, and, under saline stressing conditions, by SA and ABA pathways.


Subject(s)
Antioxidants/metabolism , Azospirillum brasilense/metabolism , Zea mays/metabolism , Abscisic Acid/metabolism , Catalase/metabolism , Cyclopentanes/metabolism , Indoleacetic Acids/metabolism , Malondialdehyde/metabolism , Oxylipins/metabolism , Plant Leaves/enzymology , Plant Roots/enzymology , Salicylic Acid/metabolism , Stress, Physiological , Superoxide Dismutase/metabolism , Zea mays/enzymology , Zea mays/microbiology
4.
Funct Plant Biol ; 45(3): 328-339, 2018 Feb.
Article in English | MEDLINE | ID: mdl-32290956

ABSTRACT

Plants are highly affected by salinity, but some plant growth-promoting bacteria (PGPB) may trigger induced systemic tolerance (IST), conferring protection against abiotic stresses. We investigated plant mechanisms under saline stress (170mM NaCl) when maize was singly or co-inoculated with Azospirillum brasilense strains Ab-V5 and Ab-V6 and Rhizobium tropici strain CIAT 899. Under greenhouse conditions, plants responded positively to inoculation and co-inoculation, but with differences between strains. Inoculation affected antioxidant enzymes that detoxify reactive oxygen species (ROS) - ascorbate peroxidase (APX), catalase (CAT) and superoxide dismutase (SOD) - mainly in leaves. Proline contents in leaves and roots and malondialdehyde (MDA) in leaves - plant-stress-marker molecules - were significantly reduced due to the inoculation, indicating reduced need for the synthesis of these molecules. Significant differences were attributed to inoculation in the expression of genes related to antioxidant activity, in general with upregulation of APX1, CAT1, SOD2 and SOD4 in leaves, and APX2 in roots. Pathogenesis-related genes PR1, prp2, prp4 and heat-shock protein hsp70 were downregulated in leaves and roots, indicating that inoculation with PGPB might reduce the need for this protection. Together the results indicate that inoculation with PGPB might provide protection from the negative effects of saline stress. However, differences were observed between strains, as A. brasilense Ab-V5 did not show salt tolerance, while the best inoculation treatments to mitigate saline stress were with Ab-V6 and co-inoculation with Ab-V6+CIAT 899. Inoculation with these strains may represent an effective strategy to mitigate salinity stress.

5.
J Plant Physiol ; 214: 39-47, 2017 Jul.
Article in English | MEDLINE | ID: mdl-28431276

ABSTRACT

Sorghum plants grown with 5mM (NH4)2SO4 showed symptoms of stress, such as reduced growth and photosynthesis, leaf chlorosis, and reddish roots. Phosphoenolpyruvate carboxylase (PEPC) activity, by supplying carbon skeletons for ammonium assimilation, plays a pivotal role in tolerance to ammonium stress. This work investigated the effect of ammonium nutrition on PPC and PPCK gene expression, on PEPC activity, and on post-translational modifications (PTMs) of PEPC in leaves and roots of sorghum plants. Ammonium increased PEPC kinase (PEPCk) activity and the phosphorylation state of PEPC in leaves, both in light and in the dark, due to increased PPCK1 expression in leaves. This result resembled the effect of salinity on sorghum leaf PEPC and PEPCk, which is thought to allow a better functioning of PEPC in conditions that limit the income of reduced C. In roots, ammonium increased PEPC activity and the amount of monoubiquitinated PEPC. The first effect was related to increased PPC3 expression in roots. These results highlight the relevance of this specific isoenzyme (PPC3) in sorghum responses to ammonium stress. Although the role of monoubiquitination is not fully understood, it also increased in germinating seeds along with massive mobilization of reserves, a process in which the anaplerotic function of PEPC is of major importance.


Subject(s)
Ammonium Compounds/toxicity , Phosphoenolpyruvate Carboxylase/metabolism , Sorghum/metabolism , Sorghum/toxicity , Gene Expression Regulation, Plant/drug effects , Gene Expression Regulation, Plant/genetics , Phosphoenolpyruvate Carboxylase/genetics , Photosynthesis/drug effects , Photosynthesis/genetics , Protein Processing, Post-Translational/drug effects , Protein Processing, Post-Translational/genetics , Protein Serine-Threonine Kinases/genetics , Protein Serine-Threonine Kinases/metabolism , Sorghum/enzymology , Ubiquitination/drug effects , Ubiquitination/genetics
6.
Planta ; 244(4): 901-13, 2016 Oct.
Article in English | MEDLINE | ID: mdl-27306451

ABSTRACT

MAIN CONCLUSION: Arabidopsis ppc3 mutant has a growth-arrest phenotype and is affected in phosphate- and salt-stress responses, showing that this protein is crucial under control or stress conditions. Phosphoenolpyruvate carboxylase (PEPC) and its dedicated kinase (PEPC-k) are ubiquitous plant proteins implicated in many physiological processes. This work investigates specific roles for the three plant-type PEPC (PTPC) and the two PEPC-k isoenzymes in Arabidopsis thaliana. The lack of any of the PEPC isoenzymes reduced growth parameters under optimal growth conditions. PEPC activity was decreased in shoots and roots of ppc2 and ppc3 mutants, respectively. Phosphate starvation increased the expression of all PTPC and PPCK genes in shoots, but only PPC3 and PPCK2 in roots. The absence of any of these two proteins was not compensated by other isoforms in roots. The effect of salt stress on PTPC and PPCK expression was modest in shoots, but PPC3 was markedly increased in roots. Interestingly, both stresses decreased root growth in each of the mutants except for ppc3. This mutant had a stressed phenotype in control conditions (reduced root growth and high level of stress molecular markers), but was unaffected in their response to high salinity. Salt stress increased PEPC activity, its phosphorylation state, and L-malate content in roots, all these responses were abolished in the ppc3 mutant. Our results highlight the importance of the PPC3 isoenzyme for the normal development of plants and for root responses to stress.


Subject(s)
Arabidopsis Proteins/genetics , Arabidopsis/genetics , Mutation , Phosphoenolpyruvate Carboxylase/genetics , Protein Serine-Threonine Kinases/genetics , Arabidopsis/enzymology , Arabidopsis/growth & development , Arabidopsis Proteins/metabolism , Blotting, Western , Gene Expression Regulation, Developmental , Gene Expression Regulation, Enzymologic , Gene Expression Regulation, Plant , Isoenzymes/genetics , Isoenzymes/metabolism , Phosphates/metabolism , Phosphoenolpyruvate Carboxylase/metabolism , Plant Roots/enzymology , Plant Roots/genetics , Plant Roots/growth & development , Plant Shoots/enzymology , Plant Shoots/genetics , Plant Shoots/growth & development , Protein Serine-Threonine Kinases/metabolism , Reverse Transcriptase Polymerase Chain Reaction , Salinity , Stress, Physiological
SELECTION OF CITATIONS
SEARCH DETAIL
...