Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
iScience ; 27(4): 109536, 2024 Apr 19.
Article in English | MEDLINE | ID: mdl-38585665

ABSTRACT

This prospective study aimed to determine the prevalence of long COVID in patients hospitalized for SARS-CoV-2 infection from March 2020 to July 2022 and assess the impact of different viral lineages. A total of 2,524 patients were followed up for 12 months, with persistent symptoms reported in 35.2% at one month, decreasing thereafter. Omicron variant patients initially showed higher symptom intensity, but this trend diminished over time. Certain viral lineages, notably Delta lineages AY.126 and AY.43, and Omicron sublineages BA.1.17, BA.2.56, and BA.5.1, consistently correlated with more severe symptoms. Overall, long COVID prevalence and severity were similar across SARS-CoV-2 variants. Specific lineages may influence post-COVID sequelae persistence and severity.

2.
Microbiol Spectr ; 11(6): e0241923, 2023 Dec 12.
Article in English | MEDLINE | ID: mdl-37855635

ABSTRACT

IMPORTANCE: The cellular immune response is essential in the protection against severe disease in patients with established SARS-CoV-2 infection. The novelty of this study lies in the evaluation of the overall performance of a standardized assay to measure cellular immune response, the SARS-CoV-2-specific interferon-γ release assay (IGRA), in hospitalized patients with severe COVID-19. The SARS-CoV-2 IGRA was shown to accurately classify patients based on disease severity and prognosis, and the study revealed that test performance was not affected by the SARS-CoV-2 variant or control tube results. We identified an assay cut-off point with a high negative predictive value against mortality. The SARS-CoV-2 IGRA in patients hospitalized for COVID-19 may be a useful tool to assess cellular immunity and adopt targeted therapeutic and preventive measures.


Subject(s)
COVID-19 , SARS-CoV-2 , Humans , COVID-19/diagnosis , Interferon-gamma Release Tests , Immunity, Cellular , Antibodies, Viral
3.
J Infect Dis ; 228(9): 1240-1252, 2023 11 02.
Article in English | MEDLINE | ID: mdl-37418551

ABSTRACT

BACKGROUND: We measured T-cell and antibody responses to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) in vaccinated patients hospitalized for coronavirus disease 2019 (COVID-19) and explored their potential value to predict outcomes. METHODS: This was a prospective, longitudinal study including vaccinated patients hospitalized with Delta and Omicron SARS-CoV-2 variants. TrimericS-IgG antibodies and SARS-CoV-2 T-cell response were measured using a specific quantitative interferon-γ release assay (IGRA). Primary outcome was all-cause 28-day mortality or need for intensive care unit (ICU) admission. Cox models were used to assess associations with outcomes. RESULTS: Of 181 individuals, 158 (87.3%) had detectable SARS-CoV-2 antibodies, 92 (50.8%) showed SARS-CoV-2-specific T-cell responses, and 87 (48.1%) had both responses. Patients who died within 28 days or were admitted to ICU were less likely to have both unspecific and specific T-cell responses in IGRA. In adjusted analyses (adjusted hazard ratio [95% confidence interval]), for the entire cohort, having both T-cell and antibody responses at admission (0.16 [.05-.58]) and Omicron variant (0.38 [.17-.87]) reduced the hazard of 28-day mortality or ICU admission, whereas higher Charlson comorbidity index score (1.27 [1.07-1.51]) and lower oxygen saturation to fraction of inspired oxygen ratio (2.36 [1.51-3.67]) increased the risk. CONCLUSIONS: Preexisting immunity against SARS-CoV-2 is strongly associated with patient outcomes in vaccinated individuals requiring hospital admission for COVID-19. Persons showing both T-cell and antibody responses have the lowest risk of severe outcomes.


Subject(s)
COVID-19 , SARS-CoV-2 , Humans , COVID-19/diagnosis , Interferon-gamma Release Tests , Longitudinal Studies , Prospective Studies , T-Lymphocytes
4.
BMC Infect Dis ; 22(1): 628, 2022 Jul 18.
Article in English | MEDLINE | ID: mdl-35850703

ABSTRACT

BACKGROUND: Mycobacterium africanum is a member of the Mycobacterium tuberculosis complex (MTBC) and is endemic in West Africa, where it causes up to half of all cases of pulmonary tuberculosis. Here, we report the first isolation of Mycobacterium africanum from the pericardial effusion culture of a patient with tuberculous pericarditis. CASE PRESENTATION: A 31-year-old man, native from Senegal, came to the emergency room with massive pericardial effusion and cardiac tamponade requiring pericardiocentesis. M. africanum subtype II was identified in the pericardial fluid. The patient completed 10 months of standard treatment, with a favorable outcome. CONCLUSIONS: We report the first case of tuberculous pericarditis caused by Mycobacterium africanum, which provide evidence that this microorganism can cause pericardial disease and must be considered in patients from endemic areas presenting with pericardial effusion.


Subject(s)
Cardiac Tamponade , Mycobacterium , Pericardial Effusion , Pericarditis, Tuberculous , Adult , Humans , Male , Pericardial Effusion/diagnosis , Pericardial Effusion/etiology , Pericardiocentesis/adverse effects , Pericarditis, Tuberculous/complications , Pericarditis, Tuberculous/diagnosis , Pericarditis, Tuberculous/drug therapy
5.
J Antimicrob Chemother ; 77(8): 2257-2264, 2022 07 28.
Article in English | MEDLINE | ID: mdl-35534369

ABSTRACT

OBJECTIVES: To assess the benefits of remdesivir in hospitalized COVID-19 patients receiving combined immunomodulatory therapy (CIT) with dexamethasone and tocilizumab. METHODS: This was a cohort study of microbiologically confirmed COVID-19 hospitalized patients. The primary outcome was all-cause 28 day mortality. Secondary outcomes were need for invasive mechanical ventilation (IMV) and IMV/death. Subgroup analyses according to SARS-CoV-2 cycle threshold (Ct) values and inflammation biomarkers were performed. Multivariable marginal structural Cox proportional hazards regression models were used to analyse the association between remdesivir therapy and the risk of outcomes of interest. RESULTS: Of 1368 hospitalized patients treated with corticosteroids, 1014 (74%) also received tocilizumab, 866 (63%) remdesivir and 767 (56%) tocilizumab + remdesivir. The 28 day mortality was 9% in the overall cohort, with an adjusted HR (aHR) of 0.32 (95% CI = 0.17-0.59) for patients receiving CIT. In the latter group, the 28 day mortality was 6.5%, with an aHR of 1.11 (95% CI = 0.57-2.16) for remdesivir use and there were no differences in secondary outcomes. The risk of primary and secondary outcomes with remdesivir differed by Ct and C-reactive protein (CRP) levels in patients receiving CIT: for 28 day mortality, the aHR was 0.48 (95% CI = 0.21-1.11) for Ct <25, 0.12 (95% CI = 0.02-0.66) for Ct <25 and <5 day symptom duration and 0.13 (95% CI = 0.03-0.50) for CRP <38 mg/L; for IMV and IMV/death, the aHR was 0.32 (95% CI = 0.13-0.77) and 0.33 (95% CI = 0.17-0.63), respectively, in patients with Ct <25. CONCLUSIONS: The benefits of remdesivir administered with dexamethasone and tocilizumab in hospitalized COVID-19 patients differ depending on Ct and CRP. Remdesivir decreases the risk of mortality and need for IMV in patients with high viral loads and low-grade systemic inflammation.


Subject(s)
COVID-19 Drug Treatment , SARS-CoV-2 , Adenosine Monophosphate/analogs & derivatives , Alanine/analogs & derivatives , Alanine/therapeutic use , Antiviral Agents/therapeutic use , Cohort Studies , Dexamethasone , Humans , Inflammation/drug therapy , Viral Load
6.
J Clin Microbiol ; 59(4)2021 03 19.
Article in English | MEDLINE | ID: mdl-33419948

ABSTRACT

Data on the performance of saliva specimens for diagnosing coronavirus disease 2019 (COVID-19) in ambulatory patients are scarce and inconsistent. We assessed saliva-based specimens for detecting severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) by reverse transcriptase PCR (RT-PCR) in the community setting and compared three different collection methods. This prospective study was conducted in three primary care centers. RT-PCR was performed on paired nasopharyngeal swabs (NPS) and saliva samples collected from outpatients with a broad clinical spectrum of illness. To assess differences in collection methods, saliva specimens were obtained in a different way in each of the participating centers: supervised collection (SVC), oropharyngeal washing (OPW), and self-collection (SC). Pairs of NPS and saliva samples from 577 patients (median age, 39 years; 44% men; 42% asymptomatic) were collected and tested, and 120 (20.8%) gave positive results. The overall agreement with NPS results and kappa coefficients (κ) for saliva samples obtained by SVC, OPW, and SC were 95% (κ = 0.85), 93.4% (κ = 0.76), and 93.3% (κ = 0.76), respectively. The sensitivities (95% confidence intervals [95% CI]) of the saliva specimens ranged from 86% (72.6% to 93.7%) for SVC to 66.7% (50.4% to 80%) for SC samples. Sensitivity was higher for samples with lower cycle threshold (CT ) values. The best RT-PCR performance was observed for SVC, with sensitivities (95% CI) of 100% (85.9% to 100%) in symptomatic individuals and 88.9% (50.7% to 99.4%) in asymptomatic individuals at CT values of ≤30. We conclude that saliva is an acceptable specimen for the detection of SARS-CoV-2 in the community setting. Specimens collected under supervision perform comparably to NPS and can effectively identify individuals at higher risk of transmission under real-life conditions.


Subject(s)
COVID-19 , SARS-CoV-2 , Adult , Female , Humans , Male , Nasopharynx , Prospective Studies , Saliva , Specimen Handling
SELECTION OF CITATIONS
SEARCH DETAIL
...