Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Regul Pept ; 129(1-3): 227-32, 2005 Jul 15.
Article in English | MEDLINE | ID: mdl-15927720

ABSTRACT

Designed zinc finger proteins (ZFPs) regulate expression of target genes when coupled to activator or repressor domains. Transfection of ZFPs into cell lines can create expression systems where the targeted endogenous gene is transcribed and the protein of interest can be investigated in its own cellular context. Here we describe the pharmacological investigation of an expression system generated using CCK2 receptor-selective ZFPs transfected into human embryonic kidney cells (HEKZFP system). The receptors expressed in this system, in response to ZFP expression, were functional in calcium mobilization studies and the potency of the agonists investigated was consistent with their action at CCK2 receptors (CCK-8S pA50 = 9.05+/-0.11, pentagastrin pA50 = 9.11+/-0.13). In addition, binding studies were conducted using [125I]-BH-CCK-8S as radioligand. The saturation binding analysis of this radioligand was consistent with a single population of high affinity CCK receptors (pK(D) = 10.24). Competition studies were also conducted using a number of previously well-characterized CCK-receptor selective ligands; JB93182, YF476, PD-134,308, SR27897, dexloxiglumide, L-365,260 and L-364,718. Overall, the estimated affinity values for these ligands were consistent with their interaction at CCK2 receptors. Therefore, CCK2 receptors up-regulated using zinc finger protein technology can provide an alternative to standard transfection techniques for the pharmacological analysis of compounds.


Subject(s)
Kidney/metabolism , Receptor, Cholecystokinin B/biosynthesis , Transcription Factors/metabolism , Up-Regulation/drug effects , Cell Line , Drug Evaluation, Preclinical/methods , Humans , Kidney/cytology , Ligands , Pharmaceutical Preparations/metabolism , Receptor, Cholecystokinin B/antagonists & inhibitors , Transcription Factors/genetics , Transfection , Up-Regulation/genetics , Zinc Fingers/genetics , Zinc Fingers/physiology
2.
J Biomol Screen ; 10(4): 304-13, 2005 Jun.
Article in English | MEDLINE | ID: mdl-15964931

ABSTRACT

Isogenic cell lines differing only in the expression of the protein of interest provide the ideal platform for cell-based screening. However, related natural lines differentially expressing the therapeutic target of choice are rare. Here the authors report a strategy for drug screening employing isogenic human cell lines in which the expression of the target protein is regulated by a gene-specific engineered zinc-finger protein (ZFP) transcription factor (TF). To demonstrate this approach, a ZFP TF activator of the human parathyroid hormone receptor 1 (PTHR1) gene was identified and introduced into HEK293 cells (negative for PTHR1). Following induction of ZFP TF expression, this cell line produced functional PTHR1 protein, resulting in a robust and ligand-specific cyclic adenosine monophosphate (cAMP) response. Reciprocally, the natural expression of PTHR1 observed in SAOS2 cells was dramatically reduced by the introduction of the appropriate PTHR1-specific ZFP TF repressor. Moreover, this ZFP-driven PTHR1 repression selectively eliminated the functional cAMP response invoked by known ligands of PTHR1. These data establish ZFP TF-generated isogenic lines as a general approach for the identification of therapeutic agents specific for the target gene of interest.


Subject(s)
Gene Expression Regulation , Protein Engineering , Transcription Factors/physiology , Zinc Fingers , Amino Acid Sequence , Base Sequence , Cell Line , DNA Primers , Humans , Molecular Sequence Data , RNA, Messenger/genetics , Receptor, Parathyroid Hormone, Type 1/chemistry , Receptor, Parathyroid Hormone, Type 1/genetics , Reverse Transcriptase Polymerase Chain Reaction , Transcription Factors/chemistry
3.
J Biomol Screen ; 9(1): 44-51, 2004 Feb.
Article in English | MEDLINE | ID: mdl-15006148

ABSTRACT

Drug discovery requires high-quality, high-throughput bioassays for lead identification and optimization. These assays are usually based on immortalized cell lines, which express the selected drug target either naturally or as a consequence of transfection with the cDNA encoding the target. Natural untransfected cell lines often fail to achieve the levels of expression required to provide assays of sufficient quality with a high enough signal-to-noise ratio. Unfortunately, the use of cDNA is increasingly restricted, as the sequences for more and more genes become subject to patent restrictions. To overcome these limitations, the authors demonstrate that engineered transcription factors with Cys2-His2 zinc finger DNA-binding domains can be used to effectively activate an endogenous gene of interest without the use of isolated cDNA of the target gene. Using this approach, the authors have generated a cell line that provides a high-quality and pharmacologically validated G-protein-coupled receptor bioassay. In principle, this technology is applicable to any gene of pharmaceutical importance in any cell type.


Subject(s)
Transcription Factors/metabolism , Amino Acid Sequence , Base Sequence , Cell Line , DNA Primers , Humans , Molecular Sequence Data , Promoter Regions, Genetic , Protein Engineering , Transcription Factors/chemistry , Transcription Factors/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...