Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Article in English | MEDLINE | ID: mdl-25871140

ABSTRACT

The spatial propagation of Hantavirus-infected mice is considered a serious threat for public health. We analyze the spatial spread of the infected mice by including diffusion in the stage-dependent model for Hantavirus infection recently proposed by Reinoso and de la Rubia [Phys. Rev. E 87, 042706 (2013)]. We consider a general scenario in which mice propagate in fronts from their refugia to the surroundings and find an expression for the speed of the front of infected mice. We also introduce a depletion time that measures the time scale for an appreciable impoverishment of the environment conditions and show how this new situation may change the spreading of the infection significantly.


Subject(s)
Hantavirus Infections/transmission , Models, Theoretical , Animals , Mice , Spatial Analysis
2.
Article in English | MEDLINE | ID: mdl-23679449

ABSTRACT

We propose a stage-dependent model with constant delay to study the effect of the initial infection-free period on the spread of Hantavirus infection in rodents. We analyze the model under various extreme weather conditions, in the context of the El Niño-La Niña Southern Oscillation phenomenon, and show how these variations determine the evolution of the system significantly. When the scenario corresponds to El Niño, the system presents a demographic explosion and a delayed outbreak of Hantavirus infection, whereas if the scenario is the opposite there is a rapid decline of the population, but with a possible persistence period that may imply a considerable risk for public health, a fact that is in agreement with available field data. We use the model to simulate a historical evolution that resembles the processes that occurred in the 1990s.


Subject(s)
Hantavirus Infections/transmission , Models, Theoretical , Age Factors , Animals , Mice , Time Factors
3.
Chaos ; 17(1): 015109, 2007 Mar.
Article in English | MEDLINE | ID: mdl-17411266

ABSTRACT

There is evidence that spiral waves and their breakup underlie mechanisms related to a wide spectrum of phenomena ranging from spatially extended chemical reactions to fatal cardiac arrhythmias [A. T. Winfree, The Geometry of Biological Time (Springer-Verlag, New York, 2001); J. Schutze, O. Steinbock, and S. C. Muller, Nature 356, 45 (1992); S. Sawai, P. A. Thomason, and E. C. Cox, Nature 433, 323 (2005); L. Glass and M. C. Mackey, From Clocks to Chaos: The Rhythms of Life (Princeton University Press, Princeton, 1988); R. A. Gray et al., Science 270, 1222 (1995); F. X. Witkowski et al., Nature 392, 78 (1998)]. Once initiated, spiral waves cannot be suppressed by periodic planar fronts, since the domains of the spiral waves grow at the expense of the fronts [A. N. Zaikin and A. M. Zhabotinsky, Nature 225, 535 (1970); A. T. Stamp, G. V. Osipov, and J. J. Collins, Chaos 12, 931 (2002); I. Aranson, H. Levine, and L. Tsimring, Phys. Rev. Lett. 76, 1170 (1996); K. J. Lee, Phys. Rev. Lett. 79, 2907 (1997); F. Xie, Z. Qu, J. N. Weiss, and A. Garfinkel, Phys. Rev. E 59, 2203 (1999)]. Here, we show that introducing periodic planar waves with long excitation duration and a period longer than the rotational period of the spiral can lead to spiral attenuation. The attenuation is not due to spiral drift and occurs periodically over cycles of several fronts, forming a variety of complex spatiotemporal patterns, which fall into two distinct general classes. Further, we find that these attenuation patterns only occur at specific phases of the descending fronts relative to the rotational phase of the spiral. We demonstrate these dynamics of phase-dependent spiral attenuation by performing numerical simulations of wave propagation in the excitable medium of myocardial cells. The effect of phase-dependent spiral attenuation we observe can lead to a general approach to spiral control in physical and biological systems with relevance for medical applications.


Subject(s)
Action Potentials , Arrhythmias, Cardiac/physiopathology , Biological Clocks , Heart Conduction System/physiopathology , Models, Cardiovascular , Myocytes, Cardiac , Animals , Computer Simulation , Humans , Oscillometry/methods
SELECTION OF CITATIONS
SEARCH DETAIL
...