Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Cancer Immunol Res ; 8(11): 1407-1425, 2020 11.
Article in English | MEDLINE | ID: mdl-32933968

ABSTRACT

Tumor growth is accompanied with dramatic changes in the cellular glycome, such as the aberrant expression of complex branched N-glycans. However, the role of this protumoral N-glycan in immune evasion and whether its removal contributes to enhancement of immune recognition and to unleashing an antitumor immune response remain elusive. We demonstrated that branched N-glycans are used by colorectal cancer cells to escape immune recognition, instructing the creation of immunosuppressive networks through inhibition of IFNγ. The removal of this "glycan-mask" exposed immunogenic mannose glycans that potentiated immune recognition by DC-SIGN-expressing immune cells, resulting in an effective antitumor immune response. We revealed a glycoimmune checkpoint in colorectal cancer, highlighting the therapeutic efficacy of its deglycosylation to potentiate immune recognition and, thus, improving cancer immunotherapy.


Subject(s)
Colorectal Neoplasms/immunology , Immunotherapy/methods , Polysaccharides/metabolism , Disease Progression , Humans
2.
PLoS One ; 8(9): e74994, 2013.
Article in English | MEDLINE | ID: mdl-24069372

ABSTRACT

The altered expressions of claudin proteins have been reported during the tumorigenesis of colorectal cancer. However, the molecular mechanisms that regulate these events in this cancer type are poorly understood. Here, we report that epidermal growth factor (EGF) increases the expression of claudin-3 in human colorectal adenocarcinoma HT-29 cells. This increase was related to increased cell migration and the formation of anchorage-dependent and anchorage-independent colonies. We further showed that the ERK1/2 and PI3K-Akt pathways were involved in the regulation of these effects because specific pharmacological inhibition blocked these events. Genetic manipulation of claudin-1 and claudin-3 in HT-29 cells showed that the overexpression of claudin-1 resulted in decreased cell migration; however, migration was not altered in cells that overexpressed claudin-3. Furthermore, the overexpression of claudin-3, but not that of claudin-1, increased the tight junction-related paracellular flux of macromolecules. Additionally, an increased formation of anchorage-dependent and anchorage-independent colonies were observed in cells that overexpressed claudin-3, while no such changes were observed when claudin-1 was overexpressed. Finally, claudin-3 silencing alone despite induce increase proliferation, and the formation of anchoragedependent and -independent colonies, it was able to prevent the EGF-induced increased malignant potential. In conclusion, our results show a novel role for claudin-3 overexpression in promoting the malignant potential of colorectal cancer cells, which is potentially regulated by the EGF-activated ERK1/2 and PI3K-Akt pathways.


Subject(s)
Claudin-3/genetics , Colorectal Neoplasms/genetics , Gene Expression , Cell Line, Tumor , Cell Movement/drug effects , Cell Proliferation/drug effects , Cell Transformation, Neoplastic/drug effects , Cell Transformation, Neoplastic/genetics , Claudin-1/genetics , Claudin-1/metabolism , Claudin-3/metabolism , Colorectal Neoplasms/metabolism , Epidermal Growth Factor/pharmacology , ErbB Receptors/metabolism , Gene Expression Regulation, Neoplastic/drug effects , Gene Silencing , Humans , Mitogen-Activated Protein Kinase 1/metabolism , Mitogen-Activated Protein Kinase 3/metabolism , Phosphatidylinositol 3-Kinases/metabolism , Protein Transport/drug effects , Proto-Oncogene Proteins c-akt/metabolism , Signal Transduction/drug effects , Tumor Stem Cell Assay
SELECTION OF CITATIONS
SEARCH DETAIL
...