Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Nature ; 610(7933): 656-660, 2022 10.
Article in English | MEDLINE | ID: mdl-36289385

ABSTRACT

Proposed mechanisms for the production of calcium in the first stars (population III stars)-primordial stars that formed out of the matter of the Big Bang-are at odds with observations1. Advanced nuclear burning and supernovae were thought to be the dominant source of the calcium production seen in all stars2. Here we suggest a qualitatively different path to calcium production through breakout from the 'warm' carbon-nitrogen-oxygen (CNO) cycle through a direct experimental measurement of the 19F(p, γ)20Ne breakout reaction down to a very low energy point of 186 kiloelectronvolts, reporting a key resonance at 225 kiloelectronvolts. In the domain of astrophysical interest2, at around 0.1 gigakelvin, this thermonuclear 19F(p, γ)20Ne rate is up to a factor of 7.4 larger than the previous recommended rate3. Our stellar models show a stronger breakout during stellar hydrogen burning than previously thought1,4,5, and may reveal the nature of calcium production in population III stars imprinted on the oldest known ultra-iron-poor star, SMSS0313-67086. Our experimental result was obtained in the China JinPing Underground Laboratory7, which offers an environment with an extremely low cosmic-ray-induced background8. Our rate showcases the effect that faint population III star supernovae can have on the nucleosynthesis observed in the oldest known stars and first galaxies, which are key mission targets of the James Webb Space Telescope9.

2.
ACS Appl Mater Interfaces ; 7(21): 11272-9, 2015 Jun 03.
Article in English | MEDLINE | ID: mdl-25915560

ABSTRACT

We have investigated the effect of accelerated ion beam irradiation on the structure and reactivity of multilayer sputter deposited Al/Ni nanomaterials. Carbon and aluminum ion beams with different charge states and intensities were used to irradiate the multilayer materials. The conditions for the irradiation-assisted self-ignition of the reactive materials and corresponding ignition thresholds for the beam intensities were determined. We discovered that relatively short (40 min or less) ion irradiations enhance the reactivity of the Al/Ni nanomaterials, that is, significantly decrease the thermal ignition temperatures (Tig) and ignition delay times (τig). We also show that irradiation leads to atomic mixing at the Al/Ni interfaces with the formation of an amorphous interlayer, in addition to the nucleation of small (2-3 nm) Al3Ni crystals within the amorphous regions. The amorphous interlayer is thought to enhance the reactivity of the multilayer energetic nanomaterial by increasing the heat of the reaction and by speeding the intermixing of the Ni and the Al. The small Al3Ni crystals may also enhance reactivity by facilitating the growth of this Al-Ni intermetallic phase. In contrast, longer irradiations decrease reactivity with higher ignition temperatures and longer ignition delay times. Such changes are also associated with growth of the Al3Ni intermetallic and decreases in the heat of reaction. Drawing on this data set, we suggest that ion irradiation can be used to fine-tune the structure and reactivity of energetic nanomaterials.

SELECTION OF CITATIONS
SEARCH DETAIL
...