Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters











Database
Language
Publication year range
1.
Carbohydr Res ; 543: 109216, 2024 Sep.
Article in English | MEDLINE | ID: mdl-39043084

ABSTRACT

In this study, a series of hydrogels were synthesized from chitosan(s) that was crosslinking with glutaraldehyde at different concentrations. Ascorbic acid in an acidic medium was used to facilitate non-covalent interactions. The chitosan(s) was obtained from shrimp cytoskeleton; while ascorbic acid was extracted from xoconostle juice. The hydrogel reaction was monitored by UV-vis spectroscopy (550 nm) to determine the reaction kinetics and reaction order at 60 °C. The hydrogels structures were characterized by NMR, FT-IR, HR-MS and SEM, while the degree of cross-linking was examined with TGA-DA. The extracellular matrices were obtained as stable hydrogels where reached maximum crosslinking was of 7 %, independent of glutaraldehyde quantity added. The rheological properties showed a behavior of weak gels and a dependence of crosslinking agent concentration on strength at different temperatures. The cytotoxicity assay showed that the gels had no adverse effects on cellular growth for all concentrations of glutaraldehyde.


Subject(s)
Biocompatible Materials , Chitosan , Hydrogels , Tissue Engineering , Hydrogels/chemistry , Hydrogels/chemical synthesis , Biocompatible Materials/chemistry , Biocompatible Materials/chemical synthesis , Biocompatible Materials/pharmacology , Chitosan/chemistry , Chitosan/pharmacology , Chitosan/chemical synthesis , Animals , Glutaral/chemistry , Rheology , Cross-Linking Reagents/chemistry
2.
Gels ; 8(7)2022 Jul 14.
Article in English | MEDLINE | ID: mdl-35877525

ABSTRACT

Two series of novel amphiphilic compounds were synthesized based on carbamates and ureas structures, using a modification of the synthesis methods reported by bibliography. The compounds were tested for organic solvent removal in a model wastewater. The lipophilic group of all compounds was a hexadecyl chain, while the hydrophilic substituent was changed with the same modifications in both series. The structures were confirmed by FT-IR, NMR, molecular dynamic simulation and HR-MS and their ability to gel organic solvents were compared. The SEM images showed the ureas had a greater ability to gel organic solvents than the carbamates and formed robust supramolecular networks, with surfaces of highly interwoven fibrillar spheres. The carbamates produced corrugated and smooth surfaces. The determination of the minimum gelation concentration demonstrated that a smaller quantity of the ureas (compared to the carbamates, measured as the weight percentage) was required to gel each solvent. This advantage of the ureas was attributed to their additional N-H bond, which is the only structural difference between the two types of compounds, and their structures were corroborated by molecular dynamic simulation. The formation of weak gels was demonstrated by rheological characterization, and they demonstrated to be good candidates for the removal organic solvents.

3.
Polymers (Basel) ; 13(21)2021 Oct 23.
Article in English | MEDLINE | ID: mdl-34771212

ABSTRACT

In this work, the influence of carbon nanotubes (CNTs) content on the mechanical and electrical properties of four series of polymeric matrix were made and their cytotoxicity on cells was evaluated to consider their use as a possible artificial muscle. For that, polymer composite yarns were electrospun using polymeric solutions at 10 wt.%. of poly(styrene-co-acrylonitrile) P(S:AN) and P(S:AN-acrylic acid) P(S:AN-AA) at several monomeric concentrations, namely 0:100, 20:80, 40:60, 50:50 (wt.%:wt.%), and 1 wt.% of AA. Carbon nanotubes (CNTs) were added to the polymeric solutions at two concentrations, 0.5 and 1.0 wt.%. PMCs yarns were collected using a blade collector. Mechanical and electrical properties of polymeric yarns indicated a dependence of CNTs content into yarns. Three areas could be found in fibers: CNTs bundles zones, distributed and aligned CNTs zones, and polymer-only zones. PMCs yarns with 0.5 wt.% CNTs concentration were found with a homogenous nanotube dispersion and axial alignment in polymeric yarn, ensuring load transfer on the polymeric matrix to CNTs, increasing the elastic modulus up to 27 MPa, and a maximum electrical current of 1.8 mA due to a good polymer-nanotube interaction.

4.
Entropy (Basel) ; 23(2)2021 02 18.
Article in English | MEDLINE | ID: mdl-33670582

ABSTRACT

Isothermal titration calorimetry is frequently employed to determine the critical micelle concentration and the micellization enthalpy of surfactants in terms of geometrical characteristics of the titration curves. Previously we have shown theoretically that even for an infinitesimal injection, the heat per titrant mol depends on the stock solution concentration. In this work, we explore experimentally the influence of the stock solution concentration on the geometrical characteristics of the titration curve and its effect in determining the critical micelle concentration and the micellization enthalpy of surfactants. The systematic study of this phenomenology involves a great number of measurements at different temperatures with several repetitions carried out using a robotic calorimeter. As surfactant hexadecyltrimethylamonium bromide was used. The magnitude and shape of the heat titration depend on the stock solution concentration. As a consequence, the inflexion-point, break-point, and step-height decrease until a limiting value. A qualitative analysis suggests that the limiting value depends only on substance. This work shows that graphical methods could not be suitable for the calculation of the critical micelle concentration and micellization enthalpy because the magnitude and shape of the titration curve depend on the stock solution concentration. Micellar properties should be calculated by the application of theoretical models as in the ligand-binding studies.

5.
Nanomaterials (Basel) ; 9(11)2019 Oct 27.
Article in English | MEDLINE | ID: mdl-31717847

ABSTRACT

A series of samples of Mg/Zn/Al LDHs (layered double hydroxides) materials was prepared by the co-precipitation and urea hydrolysis methods. They were modified with organic surfactants (acrylate and oleate anions) and characterized by X-ray diffraction, which corroborated the intercalation of anionic species into the interlayer space. The hydrophobized materials were incorporated at low contents (10 and 15 wt.%) to polystyrene, which was synthesized by emulsion polymerization techniques. The polymeric composites were analyzed by thermogravimetry to determine the decomposition temperature. The results demonstrated that the materials with Zn presented the greatest increment in the degradation temperature (7 °C < T < 54 °C). Moreover, the Friedman, Flynn-Wall-Ozawa, and Coats-Redfern models were compared to obtain the kinetic parameters of degradation process. The obtained order of decomposition of the Coats-Redfern model showed that the decomposition process occurs in at least two stages. Finally, the addition of environmentally friendly modified Layered Double Hydroxides (LDH) nanomaterials to the polystyrene (PS) matrix allowed for obtaining polymeric composites with higher thermal stability, retarding the decomposition process of PS.

6.
Int J Mol Sci ; 10(12): 5296-5325, 2009 Dec 09.
Article in English | MEDLINE | ID: mdl-20054472

ABSTRACT

We have performed a detailed study of the thermodynamics of the titration process in an isothermal titration calorimeter with full cells. We show that the relationship between the enthalpy and the heat measured is better described in terms of the equation Delta H = W(inj) + Q (where W(inj) is the work necessary to carry out the titration) than in terms of DeltaH = Q. Moreover, we show that the heat of interaction between two components is related to the partial enthalpy of interaction at infinite dilution of the titrant component, as well as to its partial volume of interaction at infinite dilution.


Subject(s)
Calorimetry/methods , Thermodynamics , Calorimetry/instrumentation
7.
Biophys Chem ; 135(1-3): 51-8, 2008 Jun.
Article in English | MEDLINE | ID: mdl-18433980

ABSTRACT

This work examines the binding in aqueous solution, through the experimental determination of specific volumes and specific adiabatic compressibility coefficients, of decyltrimethylammonium bromide to lysozyme and to non-charged polymeric particles (which have been specially synthesized by emulsion polymerization). A method was developed to calculate the specific partial properties at infinite dilution and it was shown that a Gibbs-Duhem type equation holds at this limit for two solutes. With this equation, it is possible to relate the behavior of the partial properties along different binding types at a constant temperature. It was found that the first binding type, specific with high affinity, is related to a significant reduction of surfactant compressibility. The second binding type is accompanied by the unfolding of the protein and the third one is qualitatively identical to the binding of the surfactant to non-charged polymeric particles.


Subject(s)
Models, Biological , Muramidase/chemistry , Quaternary Ammonium Compounds/chemistry , Surface-Active Agents/chemistry , Water/chemistry , Hydrophobic and Hydrophilic Interactions , Muramidase/metabolism , Polymethyl Methacrylate/chemistry , Quaternary Ammonium Compounds/metabolism , Solutions/chemistry , Surface Properties , Surface-Active Agents/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL