Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters











Database
Language
Publication year range
1.
Biomedicines ; 12(8)2024 Aug 14.
Article in English | MEDLINE | ID: mdl-39200315

ABSTRACT

Advances in melanoma research have unveiled critical insights into its genetic and molecular landscape, leading to significant therapeutic innovations. This review explores the intricate interplay between genetic alterations, such as mutations in BRAF, NRAS, and KIT, and melanoma pathogenesis. The MAPK and PI3K/Akt/mTOR signaling pathways are highlighted for their roles in tumor growth and resistance mechanisms. Additionally, this review delves into the impact of epigenetic modifications, including DNA methylation and histone changes, on melanoma progression. The tumor microenvironment, characterized by immune cells, stromal cells, and soluble factors, plays a pivotal role in modulating tumor behavior and treatment responses. Emerging technologies like single-cell sequencing, CRISPR-Cas9, and AI-driven diagnostics are transforming melanoma research, offering precise and personalized approaches to treatment. Immunotherapy, particularly immune checkpoint inhibitors and personalized mRNA vaccines, has revolutionized melanoma therapy by enhancing the body's immune response. Despite these advances, resistance mechanisms remain a challenge, underscoring the need for combined therapies and ongoing research to achieve durable therapeutic responses. This comprehensive overview aims to highlight the current state of melanoma research and the transformative impacts of these advancements on clinical practice.

2.
Planta ; 224(3): 569-81, 2006 Aug.
Article in English | MEDLINE | ID: mdl-16738865

ABSTRACT

In this work, we have genetically transformed tobacco (Nicotiana tabacum) plants with the peroxisome proliferator-activated receptor cDNA (xPPARalpha) from Xenopus laevis, which is a transcriptional factor involved in the peroxisomal proliferation and induction of fatty acid beta-oxidation in animal cells. Several transgenic lines were generated and one representative line (T) from the R2 generation was selected for further studies. Analysis of free fatty acids revealed that unsaturated fatty acids such as C16:2 and C16:3 were deficient in line T, whereas saturated fatty acids like C16:0, C18:0, and C20:0 were more abundant than in non-transformed plants. Acyl-CoA oxidase (ACOX) activity was assayed as a marker enzyme of beta-oxidation in crude leaf extracts and it was found that in line T there was a threefold increase in enzyme activity. We also found that the peroxisome population was increased and that catalase (CAT) activity was induced by clofibrate, a known activator of xPPARalpha protein, in leaves from line T. Taken together, these findings suggest that xPPARalpha is functional in plants and that its expression in tobacco leads to changes in general lipid metabolism and peroxisomal proliferation as reported in animal cells. Furthermore, it indicates that there is an endogenous ligand in tobacco cells able to activate xPPARalpha.


Subject(s)
Nicotiana/genetics , PPAR alpha/metabolism , Plants, Genetically Modified/metabolism , Acyl Coenzyme A/metabolism , Animals , Biomarkers , Catalase/metabolism , Clofibrate/pharmacology , Fatty Acids, Nonesterified/metabolism , Hypolipidemic Agents/pharmacology , Ligands , PPAR alpha/genetics , Peroxisomes/metabolism , Peroxisomes/physiology , Peroxisomes/ultrastructure , Plant Leaves/anatomy & histology , Plant Leaves/drug effects , Plant Leaves/metabolism , Plant Proteins/metabolism , Plants, Genetically Modified/anatomy & histology , Plants, Genetically Modified/drug effects , Nicotiana/anatomy & histology , Xenopus Proteins/genetics , Xenopus Proteins/metabolism , Xenopus laevis
SELECTION OF CITATIONS
SEARCH DETAIL