Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
J Biomol Struct Dyn ; 2(6): 1137-55, 1985 Jun.
Article in English | MEDLINE | ID: mdl-3916945

ABSTRACT

The structural distortion of a single- and a double-stranded decadeoxynucleotide upon binding of cis-PtCl2(NH3)2 was studied by 1H-NMR. After selective platination of d(T-C-T-C-G-G-T-C-T-C) (I) at the central d(-GpG-) site (resulting in I-Pt), several non-exchangeable base protons as well as H1', H2', H2" and H3' protons could be assigned by means of conventional NMR double-resonance techniques. Addition of the complementary decamer strand to I and I-Pt yielded the double-stranded III and III-Pt, respectively. All non-exchangeable base, H1', and most of the H2' and H2" protons in the two double stranded compounds could be assigned using 2D-chemical shift correlation (COSY) and nuclear Overhauser enhancement (NOESY) techniques. The double stranded compound III appears to adopt a B-DNA like structure. Comparison of NOEs and proton-proton coupling constants in the d(-GpG-).cisPt part in I-Pt and III-Pt reveals that their structure displays large similarity. Significant chemical shift changes (i.e. larger than 0.1 ppm) between III and III-Pt are restricted to the central four base pairs. It follows that the outer three base pairs, located on either side of the central four base pairs in III-Pt are likely to adopt a regular B-DNA type helix. The observed large upfield and downfield chemical shifts in the d(-CpGpG-) part of III with respect to III-Pt can be rationalized by describing the distortion of the double helix as a kink. A discussion of the observed physical effects upon platination of a double-stranded oligonucleotide is presented.


Subject(s)
Cisplatin/pharmacology , Oligodeoxyribonucleotides/metabolism , Base Sequence , Cisplatin/metabolism , DNA, Single-Stranded/metabolism , Magnetic Resonance Spectroscopy , Nucleic Acid Conformation/drug effects
2.
Eur J Biochem ; 147(2): 371-9, 1985 Mar 01.
Article in English | MEDLINE | ID: mdl-2982616

ABSTRACT

Proton NMR studies at 300 MHz and 500 MHz have been carried out on the trinucleoside bisphosphate d(CpGpG) and on cis-Pt(NH3)2[d(CpGpG)-N7(2),N7(3)] [abbreviated as d(CpGpGp) . cisPt]. For the Pt adduct, 13C and 31P NMR was also used for characterizing the oligonucleotide. d(CpGpG) appears to revert to a B-DNA-type single helix at lower temperatures. The relatively small concentration dependence of the proton chemical shifts, in comparison with shifts due to intramolecular stacking effects, indicates that the compound is essentially single-stranded. In d(CpGpGp) . cisPt, the first nucleoside, C(1), stacks well on top of the second, G(2), despite the N conformation of the G(2) sugar ring. The platinated GpG part in this trimer adopts largely the same structure as in cis-Pt(NH3)2[d(GpGpG)-N7(1),N7(2)] [den Hartog, J. H. J., et al. (1982) Nucleic Acids Res. 10, 4715-4730]. Main differences however, are changes in H8 chemical shifts and a 0.6-ppm downfield shift of the third nucleotide phosphorus, P(3), in d(CpGpGp) . cisPt with respect to P(2) in d(GpG) . cisPt. The latter shift change is likely to be induced by a structural alteration, caused by stacking of C(1) on top of G(2). Also, the large chemical shift differences between the two H8 protons in d(NpGpG) . cisPt fragments is discussed; the deviation from a mirror symmetry of the two guanine bases seems to be the main origin of this effect. The chemical shift changes, observed in the proton and phosphorus NMR chemical shift temperature and chemical shift pH profiles have been explained in terms of stack-destack equilibria changes.


Subject(s)
Cytosine/analysis , Base Sequence , Binding Sites , Carbohydrate Conformation , Chemical Phenomena , Chemistry , Deoxyribose , Hydrogen-Ion Concentration , Magnetic Resonance Spectroscopy , Nucleic Acid Conformation , Phosphorus , Protons , Temperature
3.
Biochemistry ; 24(3): 707-13, 1985 Jan 29.
Article in English | MEDLINE | ID: mdl-4039603

ABSTRACT

Salmon sperm DNA, treated with the antitumor agent cis-diamminedichloroplatinum(II) (cis-DDP), was enzymatically degraded to (oligo)nucleotides. Four Pt-containing products were identified by 1H NMR after preparative chromatography on a diethylaminoethyl-Sephacel column at pH 8.8. In all identified adducts, comprising approximately 90% of the total Pt in the DNA, Pt was linked to the N7 atoms of the nucleobases guanine and adenine. The two major adducts were cis-Pt(NH3)2d(pGpG) and cis-Pt-(NH3)2d(pApG), both derived from intrastrand cross-links of cis-DDP on neighboring nucleobases. Only the d(pApG) but not the d(pGpA) adduct could be detected. Two minor adducts were Pt(NH3)3dGMP, resulting from monofunctionally bound cis-DDP to guanine, and cis-Pt(NH3)2d(GMP)2, originating from interstrand cross-links on two guanines as well as from intrastrand cross-links on two guanines separated by one or more bases. For analytical purposes we developed an improved method to determine cis-DDP adducts. Routinely, 40-micrograms samples of enzymatically degraded cis-DDP-treated DNA are now analyzed by separation of the mononucleotides and Pt-containing (oligo)nucleotides on the anion-exchange column Mono Q (FPLC) at pH 8.8 (completed within 14 min) and subsequent determination of the Pt content in the collected fractions by atomic absorption spectroscopy. The method was used to optimize the digestion conditions for cis-DDP-treated DNA. In kinetic studies on the formation of the various adducts, a clear preference of the Pt compound to react with guanines occurring in the base sequence d(pGpG) was established.


Subject(s)
Cisplatin , DNA , Animals , Chemical Phenomena , Chemistry , Deoxyguanine Nucleotides , Deoxyguanosine , Deoxyribonucleotides , Kinetics , Male , Nucleic Acid Conformation , Salmon , Spermatozoa , Structure-Activity Relationship
4.
FEBS Lett ; 176(2): 393-7, 1984 Oct 29.
Article in English | MEDLINE | ID: mdl-6541594

ABSTRACT

The structural distortion of oligonucleotides upon cis-PtCl2(NH3)2[d(T-C-T-C-G-G-T-C-T-C)-N7(5), N7(6)] reveals shifting of 4 phosphorus resonances due to platination. 3 Resonances could be assigned by selective 31P-irradiation, showing P(6) (P between the two Gs) to be shifted 1.5 ppm to low field. In the concomitant double strands P(6) is shifted 0.9 ppm to lower field. A similar peak has been observed in platinated salmon sperm DNA (37 degrees C), indicating that Pt-binding to GpG-fragments in DNA is similar to that found for the decanucleotide, so the distortion of DNA might be comparable.


Subject(s)
Cisplatin/metabolism , DNA/metabolism , Oligonucleotides/metabolism , Animals , Magnetic Resonance Spectroscopy , Male , Phosphorus , Salmon , Spermatozoa/analysis
5.
Eur J Biochem ; 135(2): 343-9, 1983 Sep 15.
Article in English | MEDLINE | ID: mdl-6884369

ABSTRACT

The products resulting from reaction of cis-Pt(NH3)2Cl2 with d(CpCpGpG), d(GpCpG), d(pCpGpCpG), d(pGpCpGpC) and d(CpGpCpG) and from reaction of [Pt(dien)Cl]Cl with d(CpCpGpG) and d(GpCpG) have been characterized with the aid of proton NMR spectroscopy, circular dichroic spectroscopy and Pt analysis. The binding sites of the Pt compounds were determined by pH-dependent NMR spectroscopy. Binding of the two Pt compounds invariably occurs at the guanine N7 atoms. In all compounds containing [cis-Pt(NH3)2]2+ chelates are formed by coordination of platinum to two guanines of the same oligonucleotide. The resulting intrastrand-cross-linked oligonucleotides contain either d(GpG) . cisPt units, or d(GpCpG) . cisPt units. In the latter case the middle cytosine is not coordinated to platinum. As a result the conformational changes originating from these two chelates are different from each other. In the case of [Pt(dien)Cl]Cl as a starting product, two types of oligonucleotide adducts are formed, i.e. those with one Pt atom/molecule and those with two Pt atoms/molecule. The NMR spectra of the adducts containing only one Pt(dien)2+ show that only one adduct is formed, although two guanine bases are present. This indicates a preference for one of the N7 atoms in the molecule.


Subject(s)
Oligodeoxyribonucleotides , Oligonucleotides , Platinum , Binding Sites , Chemical Phenomena , Chemistry , Circular Dichroism , Cytosine , Guanine , Magnetic Resonance Spectroscopy , Temperature
6.
Eur J Biochem ; 134(3): 485-95, 1983 Aug 15.
Article in English | MEDLINE | ID: mdl-6684039

ABSTRACT

Proton NMR studies at 500 MHz in aqueous solution were carried out on the G-G chelated deoxytrinucleosidediphosphate platinum complex cis-Pt(NH3)2[d(GpCpG], on the uncoordinated trinucleotide d(GpCpG) and on the constituent monomers cis-Pt(NH3)2[d(Gp)]2, cis-Pt(NH3)2[d(pG)]2, d(Gp), d(pCp) and d(pG). Complete NMR spectral assignments are given and chemical shifts and coupling constants are analysed to obtain an impression of the detailed structure of d(GpCpG) and the distortion of the structure due to chelation with [cis-Pt(NH3)2]2+. Platination of the guanosine monophosphates affects the sugar conformational equilibrium to favour the N conformation of the deoxyribose ring. This feature is also apparent in ribose mononucleotides and is possibly caused by an increased anomeric effect. In cis-Pt(NH3)2[d(pG)]2 the phase angle of pseudorotation of the S-type sugar ring is 20 degrees higher than in 'free' d(pG) which might be an indication for an ionic interaction between the positive platinum and the negatively charged phosphate. It appears that d(GpCpG) reverts from a predominantly random coil to a normal right-handed B-DNA-like single-helical structure at lower temperatures, whereas the conformational features of cis-Pt(NH3)2[d(GpCpG)] are largely temperature-independent. In the latter compound much conformational freedom along the backbone angles is seen. The cytosine protons and deoxyribose protons exhibit almost no shielding effect as should normally be exerted by the guanine bases in stacking positions. This is interpreted in terms of a 'turning away' of the cytosine residue from both chelating guanines. Conformational features of cis-Pt(NH3)2[d(GpCpG)[ are compared with the 'bulge-out' of the ribose-trinucleotide m6(2)ApUpm6(2)A.


Subject(s)
Cisplatin , DNA , Oligodeoxyribonucleotides , Oligonucleotides , Binding Sites , Chemical Phenomena , Chemistry , Magnetic Resonance Spectroscopy , Nucleic Acid Conformation
7.
Nucleic Acids Res ; 10(15): 4715-30, 1982 Aug 11.
Article in English | MEDLINE | ID: mdl-6890203

ABSTRACT

A 500, 400 and 300 MHz proton NMR study of the reaction product of cis-Pt(NH3)2Cl2 or cis-[Pt(NH3)2 (H2O)2] (NO3)2 with the deoxydinucleotide d(GpG): cis-[Pt(NH3)2 d(GpG)] was carried out. Complete assignment of the proton resonances by decoupling experiments and computer simulation of the high field part of the spectrum yield proton-proton and proton-phosphorus coupling constants of high precision. Analysis of these coupling constants reveal a 100% N (C3'-endo) conformation for the deoxyribose ring at the 5'-terminal part of the chelated d(GpG) moiety. In contrast, the 3'-terminal -pG part of the molecule displays the normal behaviour for deoxyriboses: the sugar ring prefers to adopt an S (C2'-endo) conformation (about 70%). Extrapolating from this model compound, it is suggested that Pt chelation by a -dGpdG- sequence of DNA would require a S to N conformational change of one deoxyribose moiety as the main conformational alteration and lead to a kink in one strand of the double-helical structure of DNA.


Subject(s)
Cisplatin , Deoxyguanine Nucleotides , Dinucleoside Phosphates , Chemical Phenomena , Chemistry , Magnetic Resonance Spectroscopy , Models, Molecular , Molecular Conformation , Nucleic Acid Conformation , Temperature
8.
Nucleic Acids Res ; 8(1): 169-81, 1980 Jan 11.
Article in English | MEDLINE | ID: mdl-7355127

ABSTRACT

A comparative nuclear magnetic resonance study of the hydrogen-bonded imino protons in a series of synthetic DNA fragments is presented. The fragments ATCCTA(Tn)TAGGAT are in principle capable of forming either a self-complementary hairpin loop structure (monomer form) or an interior loop structure (dimeric form). It has been shown, that for n = 1 only the dimer structure is present in aqueous solution, whereas the exclusive existence of the hairpin loop structure is indicated for n = 3, 4 & 5. Surprisingly, for n = 2 two different structures appear to be present in solution. Concentration studies show that both monomers and dimers exist side by side in this case. Hairpins as well as interior loops form extra "melting sites" in addition to the wellknown fraying phenomenon at the terminus of the double helix.


Subject(s)
Oligodeoxyribonucleotides , Oligonucleotides , Base Composition , DNA , Magnetic Resonance Spectroscopy , Nucleic Acid Conformation , Nucleic Acid Denaturation
SELECTION OF CITATIONS
SEARCH DETAIL
...