Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Language
Publication year range
1.
BMC Bioinformatics ; 21(1): 187, 2020 May 14.
Article in English | MEDLINE | ID: mdl-32408861

ABSTRACT

BACKGROUND: Cardiotoxicity, characterized by severe cardiac dysfunction, is a major problem in patients treated with different classes of anticancer drugs. Development of predictable human-based models and assays for drug screening are crucial for preventing potential drug-induced adverse effects. Current animal in vivo models and cell lines are not always adequate to represent human biology. Alternatively, human induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs) show great potential for disease modelling and drug-induced toxicity screenings. Fully automated high-throughput screening of drug toxicity on hiPSC-CMs by fluorescence image analysis is, however, very challenging, due to clustered cell growth patterns and strong intracellular and intercellular variation in the expression of fluorescent markers. RESULTS: In this paper, we report on the development of a fully automated image analysis system for quantification of cardiotoxic phenotypes from hiPSC-CMs that are treated with various concentrations of anticancer drugs doxorubicin or crizotinib. This high-throughput system relies on single-cell segmentation by nuclear signal extraction, fuzzy C-mean clustering of cardiac α-actinin signal, and finally nuclear signal propagation. When compared to manual segmentation, it generates precision and recall scores of 0.81 and 0.93, respectively. CONCLUSIONS: Our results show that our fully automated image analysis system can reliably segment cardiomyocytes even with heterogeneous α-actinin signals.


Subject(s)
Cardiotoxicity/pathology , Image Processing, Computer-Assisted , Induced Pluripotent Stem Cells/pathology , Myocytes, Cardiac/pathology , Automation , Cell Communication , Cell Count , Cell Line , Doxorubicin/adverse effects , Humans , Phenotype
SELECTION OF CITATIONS
SEARCH DETAIL
...