Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 98
Filter
1.
Nat Commun ; 15(1): 3311, 2024 Apr 17.
Article in English | MEDLINE | ID: mdl-38632224

ABSTRACT

Inducible gene expression systems can be used to control the expression of a gene of interest by means of a small-molecule. One of the most common designs involves engineering a small-molecule responsive transcription factor (TF) and its cognate promoter, which often results in a compromise between minimal uninduced background expression (leakiness) and maximal induced expression. Here, we focus on an alternative strategy using quantitative synthetic biology to mitigate leakiness while maintaining high expression, without modifying neither the TF nor the promoter. Through mathematical modelling and experimental validations, we design the CASwitch, a mammalian synthetic gene circuit based on combining two well-known network motifs: the Coherent Feed-Forward Loop (CFFL) and the Mutual Inhibition (MI). The CASwitch combines the CRISPR-Cas endoribonuclease CasRx with the state-of-the-art Tet-On3G inducible gene system to achieve high performances. To demonstrate the potentialities of the CASwitch, we apply it to three different scenarios: enhancing a whole-cell biosensor, controlling expression of a toxic gene and inducible production of Adeno-Associated Virus (AAV) vectors.


Subject(s)
Gene Expression Regulation , Genes, Synthetic , Animals , Transcription Factors/genetics , Gene Regulatory Networks , Promoter Regions, Genetic , Mammals/genetics , CRISPR-Cas Systems
2.
Hepatology ; 2023 Sep 20.
Article in English | MEDLINE | ID: mdl-37729391

ABSTRACT

BACKGROUND AND AIMS: Hepatoblastoma (HB) is the predominant form of pediatric liver cancer, though it remains exceptionally rare. While treatment outcomes for children with HB have improved, patients with advanced tumors face limited therapeutic choices. Additionally, survivors often suffer from long-term adverse effects due to treatment, including ototoxicity, cardiotoxicity, delayed growth, and secondary tumors. Consequently, there is a pressing need to identify new and effective therapeutic strategies for patients with HB. Computational methods to predict drug sensitivity from a tumor's transcriptome have been successfully applied for some common adult malignancies, but specific efforts in pediatric cancers are lacking because of the paucity of data. APPROACH AND RESULTS: In this study, we used DrugSense to assess drug efficacy in patients with HB, particularly those with the aggressive C2 subtype associated with poor clinical outcomes. Our method relied on publicly available collections of pan-cancer transcriptional profiles and drug responses across 36 tumor types and 495 compounds. The drugs predicted to be most effective were experimentally validated using patient-derived xenograft models of HB grown in vitro and in vivo. We thus identified 2 cyclin-dependent kinase 9 inhibitors, alvocidib and dinaciclib as potent HB growth inhibitors for the high-risk C2 molecular subtype. We also found that in a cohort of 46 patients with HB, high cyclin-dependent kinase 9 tumor expression was significantly associated with poor prognosis. CONCLUSIONS: Our work proves the usefulness of computational methods trained on pan-cancer data sets to reposition drugs in rare pediatric cancers such as HB, and to help clinicians in choosing the best treatment options for their patients.

3.
Genome Biol ; 24(1): 177, 2023 08 01.
Article in English | MEDLINE | ID: mdl-37528411

ABSTRACT

BACKGROUND: RNA profiling technologies at single-cell resolutions, including single-cell and single-nuclei RNA sequencing (scRNA-seq and snRNA-seq, scnRNA-seq for short), can help characterize the composition of tissues and reveal cells that influence key functions in both healthy and disease tissues. However, the use of these technologies is operationally challenging because of high costs and stringent sample-collection requirements. Computational deconvolution methods that infer the composition of bulk-profiled samples using scnRNA-seq-characterized cell types can broaden scnRNA-seq applications, but their effectiveness remains controversial. RESULTS: We produced the first systematic evaluation of deconvolution methods on datasets with either known or scnRNA-seq-estimated compositions. Our analyses revealed biases that are common to scnRNA-seq 10X Genomics assays and illustrated the importance of accurate and properly controlled data preprocessing and method selection and optimization. Moreover, our results suggested that concurrent RNA-seq and scnRNA-seq profiles can help improve the accuracy of both scnRNA-seq preprocessing and the deconvolution methods that employ them. Indeed, our proposed method, Single-cell RNA Quantity Informed Deconvolution (SQUID), which combines RNA-seq transformation and dampened weighted least-squares deconvolution approaches, consistently outperformed other methods in predicting the composition of cell mixtures and tissue samples. CONCLUSIONS: We showed that analysis of concurrent RNA-seq and scnRNA-seq profiles with SQUID can produce accurate cell-type abundance estimates and that this accuracy improvement was necessary for identifying outcomes-predictive cancer cell subclones in pediatric acute myeloid leukemia and neuroblastoma datasets. These results suggest that deconvolution accuracy improvements are vital to enabling its applications in the life sciences.


Subject(s)
Gene Expression Profiling , Transcriptome , Child , Humans , RNA-Seq , Gene Expression Profiling/methods , RNA, Small Interfering , Sequence Analysis, RNA/methods , Single-Cell Analysis/methods
4.
BMC Genomics ; 24(1): 206, 2023 Apr 18.
Article in English | MEDLINE | ID: mdl-37072692

ABSTRACT

BACKGROUND: Inherited retinal diseases (IRD) are genetically heterogeneous disorders that cause the dysfunction or loss of photoreceptor cells and ultimately lead to blindness. To date, next-generation sequencing procedures fail to detect pathogenic sequence variants in coding regions of known IRD disease genes in about 30-40% of patients. One of the possible explanations for this missing heritability is the presence of yet unidentified transcripts of known IRD genes. Here, we aimed to define the transcript composition of IRD genes in the human retina by a meta-analysis of publicly available RNA-seq datasets using an ad-hoc designed pipeline. RESULTS: We analysed 218 IRD genes and identified 5,054 transcripts, 3,367 of which were not previously reported. We assessed their putative expression levels and focused our attention on 435 transcripts predicted to account for at least 5% of the expression of the corresponding gene. We looked at the possible impact of the newly identified transcripts at the protein level and experimentally validated a subset of them. CONCLUSIONS: This study provides an unprecedented, detailed overview of the complexity of the human retinal transcriptome that can be instrumental in contributing to the resolution of some cases of missing heritability in IRD patients.


Subject(s)
Retinal Diseases , Transcriptome , Humans , Retina/metabolism , Retinal Diseases/genetics , Retinal Diseases/diagnosis , Retinal Diseases/metabolism , Mutation
5.
Br J Pharmacol ; 180(6): 775-785, 2023 03.
Article in English | MEDLINE | ID: mdl-36444690

ABSTRACT

BACKGROUND AND PURPOSE: Pharmacological inhibitors of TMEM16A (ANO1), a Ca2+ -activated Cl- channel, are important tools of research and possible therapeutic agents acting on smooth muscle, airway epithelia and cancer cells. We tested a panel of TMEM16A inhibitors, including CaCCinh -A01, niclosamide, MONNA, Ani9 and niflumic acid, to evaluate their possible effect on intracellular Ca2+ . EXPERIMENTAL APPROACH: We recorded cytosolic Ca2+ increase elicited with UTP, ionomycin or IP3 uncaging. KEY RESULTS: Unexpectedly, we found that all compounds, except for Ani9, markedly decreased intracellular Ca2+ elevation induced by stimuli acting on intracellular Ca2+ stores. These effects were similarly observed in cells with and without TMEM16A expression. We investigated in more detail the mechanism of action of niclosamide and CaCCinh -A01. Acute addition of niclosamide directly increased intracellular Ca2+ , an activity consistent with inhibition of the SERCA pump. In contrast to niclosamide, CaCCinh -A01 did not elevate intracellular Ca2+ , thus implying a different mechanism of action, possibly a block of inositol triphosphate receptors. CONCLUSIONS AND IMPLICATIONS: Most TMEM16A inhibitors are endowed with indirect effects mediated by alteration of intracellular Ca2+ handling, which may in part preclude their use as TMEM16A research tools.


Subject(s)
Calcium , Chloride Channels , Calcium/metabolism , Anoctamin-1/metabolism , Niclosamide/pharmacology , Calcium Signaling
7.
Commun Biol ; 5(1): 1034, 2022 09 29.
Article in English | MEDLINE | ID: mdl-36175545

ABSTRACT

Microfluidic-based cell culture allows for precise spatio-temporal regulation of microenvironment, live cell imaging and better recapitulation of physiological conditions, while minimizing reagents' consumption. Despite their usefulness, most microfluidic systems are designed with one specific application in mind and usually require specialized equipment and expertise for their operation. All these requirements prevent microfluidic-based cell culture to be widely adopted. Here, we designed and implemented a versatile and easy-to-use perfusion cell culture microfluidic platform for multiple applications (VersaLive) requiring only standard pipettes. Here, we showcase the multiple uses of VersaLive (e.g., time-lapse live cell imaging, immunostaining, cell recovery, cell lysis, plasmid transfection) in mammalian cell lines and primary cells. VersaLive could replace standard cell culture formats in several applications, thus decreasing costs and increasing reproducibility across laboratories. The layout, documentation and protocols are open-source and available online at https://versalive.tigem.it/ .


Subject(s)
Microfluidics , Names , Animals , Cell Culture Techniques , Mammals , Reproducibility of Results
8.
iScience ; 25(2): 103756, 2022 Feb 18.
Article in English | MEDLINE | ID: mdl-35128356

ABSTRACT

The Wnt/ß-catenin pathway is involved in development, cancer, and embryonic stem cell (ESC) maintenance; its dual role in stem cell self-renewal and differentiation is still controversial. Here, by applying an in vitro system enabling inducible gene expression control, we report that moderate induction of transcriptionally active exogenous ß-catenin in ß-catenin null mouse ESCs promotes epiblast-like cell (EpiLC) derivation in vitro. Instead, in wild-type cells, moderate chemical pre-activation of the Wnt/ß-catenin pathway promotes EpiLC in vitro derivation. Finally, we suggest that moderate ß-catenin levels in ß-catenin null mouse ESCs favor early stem cell commitment toward mesoderm if the exogenous protein is induced only in the "ground state" of pluripotency condition, or endoderm if the induction is maintained during the differentiation. Overall, our results confirm previous findings about the role of ß-catenin in pluripotency and differentiation, while indicating a role for its doses in promoting specific differentiation programs.

9.
Int J Mol Sci ; 22(23)2021 Nov 27.
Article in English | MEDLINE | ID: mdl-34884638

ABSTRACT

Diagnosis and cure for rare diseases represent a great challenge for the scientific community who often comes up against the complexity and heterogeneity of clinical picture associated to a high cost and time-consuming drug development processes. Here we show a drug repurposing strategy applied to nephropathic cystinosis, a rare inherited disorder belonging to the lysosomal storage diseases. This approach consists in combining mechanism-based and cell-based screenings, coupled with an affordable computational analysis, which could result very useful to predict therapeutic responses at both molecular and system levels. Then, we identified potential drugs and metabolic pathways relevant for the pathophysiology of nephropathic cystinosis by comparing gene-expression signature of drugs that share common mechanisms of action or that involve similar pathways with the disease gene-expression signature achieved with RNA-seq.


Subject(s)
Amino Acid Transport Systems, Neutral/genetics , Cystinosis/drug therapy , Cystinosis/genetics , Drug Repositioning , Kidney Diseases/drug therapy , Kidney Diseases/genetics , Rare Diseases/drug therapy , Amino Acid Transport Systems, Neutral/metabolism , Amino Acid Transport Systems, Neutral/radiation effects , Cells, Cultured , Computational Biology/methods , Cystinosis/metabolism , Drug Evaluation, Preclinical/methods , Humans , Kidney Diseases/metabolism , Kidney Tubules, Proximal/drug effects , Kidney Tubules, Proximal/metabolism , Kidney Tubules, Proximal/pathology , Metabolic Networks and Pathways , Rare Diseases/genetics , Rare Diseases/metabolism , Transcriptome
10.
Nat Commun ; 12(1): 2452, 2021 04 27.
Article in English | MEDLINE | ID: mdl-33907191

ABSTRACT

The cell cycle is the process by which eukaryotic cells replicate. Yeast cells cycle asynchronously with each cell in the population budding at a different time. Although there are several experimental approaches to synchronise cells, these usually work only in the short-term. Here, we build a cyber-genetic system to achieve long-term synchronisation of the cell population, by interfacing genetically modified yeast cells with a computer by means of microfluidics to dynamically change medium, and a microscope to estimate cell cycle phases of individual cells. The computer implements a controller algorithm to decide when, and for how long, to change the growth medium to synchronise the cell-cycle across the population. Our work builds upon solid theoretical foundations provided by Control Engineering. In addition to providing an avenue for yeast cell cycle synchronisation, our work shows that control engineering can be used to automatically steer complex biological processes towards desired behaviours similarly to what is currently done with robots and autonomous vehicles.


Subject(s)
Cell Cycle/genetics , Cyclins/genetics , Feedback, Physiological , GTP Phosphohydrolases/genetics , Gene Expression Regulation, Fungal , Membrane Proteins/genetics , Saccharomyces cerevisiae Proteins/genetics , Saccharomyces cerevisiae/genetics , Algorithms , Automation, Laboratory , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Cell Cycle/drug effects , Culture Media/chemistry , Culture Media/pharmacology , Cyclins/metabolism , GTP Phosphohydrolases/metabolism , Genes, Reporter , Luminescent Proteins/genetics , Luminescent Proteins/metabolism , Membrane Proteins/metabolism , Microfluidic Analytical Techniques , Models, Biological , Organisms, Genetically Modified , Saccharomyces cerevisiae/drug effects , Saccharomyces cerevisiae/growth & development , Saccharomyces cerevisiae/metabolism , Saccharomyces cerevisiae Proteins/metabolism , Red Fluorescent Protein
11.
Stem Cell Reports ; 16(5): 1381-1390, 2021 05 11.
Article in English | MEDLINE | ID: mdl-33891873

ABSTRACT

Controlling cell fate has great potential for regenerative medicine, drug discovery, and basic research. Although transcription factors are able to promote cell reprogramming and transdifferentiation, methods based on their upregulation often show low efficiency. Small molecules that can facilitate conversion between cell types can ameliorate this problem working through safe, rapid, and reversible mechanisms. Here, we present DECCODE, an unbiased computational method for identification of such molecules based on transcriptional data. DECCODE matches a large collection of drug-induced profiles for drug treatments against a large dataset of primary cell transcriptional profiles to identify drugs that either alone or in combination enhance cell reprogramming and cell conversion. Extensive validation in the context of human induced pluripotent stem cells shows that DECCODE is able to prioritize drugs and drug combinations enhancing cell reprogramming. We also provide predictions for cell conversion with single drugs and drug combinations for 145 different cell types.


Subject(s)
Cellular Reprogramming , Small Molecule Libraries/pharmacology , Algorithms , Animals , Automation , Cellular Reprogramming/drug effects , Cluster Analysis , Induced Pluripotent Stem Cells/cytology , Induced Pluripotent Stem Cells/metabolism , Mice , Reproducibility of Results
12.
Cancer Res ; 81(8): 1988-2001, 2021 04 15.
Article in English | MEDLINE | ID: mdl-33687947

ABSTRACT

Hepatic fat accumulation is associated with diabetes and hepatocellular carcinoma (HCC). Here, we characterize the metabolic response that high-fat availability elicits in livers before disease development. After a short term on a high-fat diet (HFD), otherwise healthy mice showed elevated hepatic glucose uptake and increased glucose contribution to serine and pyruvate carboxylase activity compared with control diet (CD) mice. This glucose phenotype occurred independently from transcriptional or proteomic programming, which identifies increased peroxisomal and lipid metabolism pathways. HFD-fed mice exhibited increased lactate production when challenged with glucose. Consistently, administration of an oral glucose bolus to healthy individuals revealed a correlation between waist circumference and lactate secretion in a human cohort. In vitro, palmitate exposure stimulated production of reactive oxygen species and subsequent glucose uptake and lactate secretion in hepatocytes and liver cancer cells. Furthermore, HFD enhanced the formation of HCC compared with CD in mice exposed to a hepatic carcinogen. Regardless of the dietary background, all murine tumors showed similar alterations in glucose metabolism to those identified in fat exposed nontransformed mouse livers, however, particular lipid species were elevated in HFD tumor and nontumor-bearing HFD liver tissue. These findings suggest that fat can induce glucose-mediated metabolic changes in nontransformed liver cells similar to those found in HCC. SIGNIFICANCE: With obesity-induced hepatocellular carcinoma on a rising trend, this study shows in normal, nontransformed livers that fat induces glucose metabolism similar to an oncogenic transformation.


Subject(s)
Carcinoma, Hepatocellular/etiology , Diet, High-Fat , Dietary Fats/metabolism , Glucose/metabolism , Hepatocytes/metabolism , Liver Neoplasms/etiology , Animals , Carcinoma, Hepatocellular/metabolism , Cell Transformation, Neoplastic , Citric Acid Cycle/physiology , Fatty Acids/metabolism , Glucose Tolerance Test , Humans , Lactic Acid/biosynthesis , Lipid Metabolism , Liver Neoplasms/metabolism , Mice , Mice, Inbred C57BL , Obesity/complications , Palmitates/pharmacology , Peroxisomes/metabolism , Proteomics , Pyruvate Carboxylase/metabolism , Random Allocation , Reactive Oxygen Species/metabolism , Serine/metabolism , Transcriptional Activation
13.
ACS Omega ; 6(4): 2473-2476, 2021 Feb 02.
Article in English | MEDLINE | ID: mdl-33553865

ABSTRACT

Extracting quantitative measurements from time-lapse images is necessary in external feedback control applications, where segmentation results are used to inform control algorithms. We describe ChipSeg, a computational tool that segments bacterial and mammalian cells cultured in microfluidic devices and imaged by time-lapse microscopy, which can be used also in the context of external feedback control. The method is based on thresholding and uses the same core functions for both cell types. It allows us to segment individual cells in high cell density microfluidic devices, to quantify fluorescent protein expression over a time-lapse experiment, and to track individual mammalian cells. ChipSeg enables robust segmentation in external feedback control experiments and can be easily customized for other experimental settings and research aims.

14.
Methods Mol Biol ; 2229: 205-219, 2021.
Article in English | MEDLINE | ID: mdl-33405224

ABSTRACT

Applications of control engineering to mammalian cell biology have been recently implemented for precise regulation of gene expression. In this chapter, we report the main experimental and computational methodologies to implement automatic feedback control of gene expression in mammalian cells using a microfluidics/microscopy platform.


Subject(s)
Gene Expression , Microfluidic Analytical Techniques/instrumentation , Algorithms , Animals , Genetic Engineering , Humans , Lab-On-A-Chip Devices
15.
Bioinformatics ; 36(Suppl_2): i787-i794, 2020 12 30.
Article in English | MEDLINE | ID: mdl-33381827

ABSTRACT

MOTIVATION: Untargeted metabolomic approaches hold a great promise as a diagnostic tool for inborn errors of metabolisms (IEMs) in the near future. However, the complexity of the involved data makes its application difficult and time consuming. Computational approaches, such as metabolic network simulations and machine learning, could significantly help to exploit metabolomic data to aid the diagnostic process. While the former suffers from limited predictive accuracy, the latter is normally able to generalize only to IEMs for which sufficient data are available. Here, we propose a hybrid approach that exploits the best of both worlds by building a mapping between simulated and real metabolic data through a novel method based on Siamese neural networks (SNN). RESULTS: The proposed SNN model is able to perform disease prioritization for the metabolic profiles of IEM patients even for diseases that it was not trained to identify. To the best of our knowledge, this has not been attempted before. The developed model is able to significantly outperform a baseline model that relies on metabolic simulations only. The prioritization performances demonstrate the feasibility of the method, suggesting that the integration of metabolic models and data could significantly aid the IEM diagnosis process in the near future. AVAILABILITY AND IMPLEMENTATION: Metabolic datasets used in this study are publicly available from the cited sources. The original data produced in this study, including the trained models and the simulated metabolic profiles, are also publicly available (Messa et al., 2020).


Subject(s)
Metabolic Diseases , Neural Networks, Computer , Humans , Machine Learning , Metabolome , Metabolomics
16.
Proc Natl Acad Sci U S A ; 117(51): 32453-32463, 2020 12 22.
Article in English | MEDLINE | ID: mdl-33288711

ABSTRACT

Pathogenic mutations in the copper transporter ATP7B have been hypothesized to affect its protein interaction landscape contributing to loss of function and, thereby, to hepatic copper toxicosis in Wilson disease. Although targeting mutant interactomes was proposed as a therapeutic strategy, druggable interactors for rescue of ATP7B mutants remain elusive. Using proteomics, we found that the frequent H1069Q substitution promotes ATP7B interaction with HSP70, thus accelerating endoplasmic reticulum (ER) degradation of the mutant protein and consequent copper accumulation in hepatic cells. This prompted us to use an HSP70 inhibitor as bait in a bioinformatics search for structurally similar Food and Drug Administration-approved drugs. Among the hits, domperidone emerged as an effective corrector that recovered trafficking and function of ATP7B-H1069Q by impairing its exposure to the HSP70 proteostatic network. Our findings suggest that HSP70-mediated degradation can be safely targeted with domperidone to rescue ER-retained ATP7B mutants and, hence, to counter the onset of Wilson disease.


Subject(s)
Copper-Transporting ATPases/genetics , Copper-Transporting ATPases/metabolism , Domperidone/pharmacology , HSP70 Heat-Shock Proteins/metabolism , Hepatolenticular Degeneration/genetics , Benzimidazoles/chemistry , Benzimidazoles/pharmacology , Cells, Cultured , Copper/metabolism , Domperidone/chemistry , Endoplasmic Reticulum/drug effects , Endoplasmic Reticulum/metabolism , HSP70 Heat-Shock Proteins/antagonists & inhibitors , Hep G2 Cells , Hepatocytes/metabolism , Hepatolenticular Degeneration/drug therapy , Hepatolenticular Degeneration/metabolism , Hepatolenticular Degeneration/pathology , Humans , Mutation, Missense , Nipecotic Acids/chemistry , Nipecotic Acids/pharmacology , Protein Transport/drug effects , Protein Transport/genetics , Proteomics/methods
17.
Sci Adv ; 6(39)2020 09.
Article in English | MEDLINE | ID: mdl-32978159

ABSTRACT

Cells respond to starvation by shutting down protein synthesis and by activating catabolic processes, including autophagy, to recycle nutrients. This two-pronged response is mediated by the integrated stress response (ISR) through phosphorylation of eIF2α, which represses protein translation, and by inhibition of mTORC1 signaling, which promotes autophagy also through a stress-responsive transcriptional program. Implementation of such a program, however, requires protein synthesis, thus conflicting with general repression of translation. How is this mismatch resolved? We found that the main regulator of the starvation-induced transcriptional program, TFEB, counteracts protein synthesis inhibition by directly activating expression of GADD34, a component of the protein phosphatase 1 complex that dephosphorylates eIF2α. We discovered that GADD34 plays an essential role in autophagy by tuning translation during starvation, thus enabling lysosomal biogenesis and a sustained autophagic flux. Hence, the TFEB-GADD34 axis integrates the mTORC1 and ISR pathways in response to starvation.


Subject(s)
Autophagy , Starvation , Autophagy/genetics , Eukaryotic Initiation Factor-2/metabolism , Humans , Mechanistic Target of Rapamycin Complex 1/genetics , Mechanistic Target of Rapamycin Complex 1/metabolism , Phosphorylation/physiology , Protein Phosphatase 1/genetics , Protein Phosphatase 1/metabolism
19.
Nat Commun ; 11(1): 970, 2020 02 20.
Article in English | MEDLINE | ID: mdl-32080200

ABSTRACT

Deregulation of mitochondrial network in terminally differentiated cells contributes to a broad spectrum of disorders. Methylmalonic acidemia (MMA) is one of the most common inherited metabolic disorders, due to deficiency of the mitochondrial methylmalonyl-coenzyme A mutase (MMUT). How MMUT deficiency triggers cell damage remains unknown, preventing the development of disease-modifying therapies. Here we combine genetic and pharmacological approaches to demonstrate that MMUT deficiency induces metabolic and mitochondrial alterations that are exacerbated by anomalies in PINK1/Parkin-mediated mitophagy, causing the accumulation of dysfunctional mitochondria that trigger epithelial stress and ultimately cell damage. Using drug-disease network perturbation modelling, we predict targetable pathways, whose modulation repairs mitochondrial dysfunctions in patient-derived cells and alleviate phenotype changes in mmut-deficient zebrafish. These results suggest a link between primary MMUT deficiency, diseased mitochondria, mitophagy dysfunction and epithelial stress, and provide potential therapeutic perspectives for MMA.


Subject(s)
Amino Acid Metabolism, Inborn Errors/metabolism , Amino Acid Metabolism, Inborn Errors/pathology , Metabolism, Inborn Errors/metabolism , Metabolism, Inborn Errors/pathology , Methylmalonyl-CoA Mutase/deficiency , Mitochondrial Diseases/metabolism , Mitochondrial Diseases/pathology , Mitophagy/physiology , Alkyl and Aryl Transferases/deficiency , Alkyl and Aryl Transferases/genetics , Amino Acid Metabolism, Inborn Errors/genetics , Animals , Disease Models, Animal , Epithelial Cells/metabolism , Epithelial Cells/pathology , Female , Gene Knockout Techniques , Humans , Male , Membrane Proteins/deficiency , Membrane Proteins/genetics , Metabolism, Inborn Errors/genetics , Methylmalonyl-CoA Mutase/genetics , Methylmalonyl-CoA Mutase/metabolism , Mice , Mice, Knockout , Mitochondrial Diseases/genetics , Mitophagy/genetics , Protein Kinases/genetics , Protein Kinases/metabolism , Stress, Physiological , Ubiquitin-Protein Ligases/genetics , Ubiquitin-Protein Ligases/metabolism , Zebrafish
20.
Sci Data ; 6(1): 262, 2019 11 06.
Article in English | MEDLINE | ID: mdl-31695049

ABSTRACT

Williams-Beuren syndrome (WBS) is a relatively rare disease caused by the deletion of 1.5 to 1.8 Mb on chromosome 7 which contains approximately 28 genes. This multisystem disorder is mainly characterized by supravalvular aortic stenosis, mental retardation, and distinctive facial features. We generated mouse embryonic stem (ES) cells clones expressing each of the 4 human WBS genes (WBSCR1, GTF2I, GTF2IRD1 and GTF2IRD2) found in the specific delated region 7q11.23 causative of the WBS. We generated at least three stable clones for each gene with stable integration in the ROSA26 locus of a tetracycline-inducible upstream of the coding sequence of the genet tagged with a 3xFLAG epitope. Three clones for each gene were transcriptionally profiled in inducing versus non-inducing conditions for a total of 24 profiles. This small collection of human WBS-ES cell clones represents a resource to facilitate the study of the function of these genes during differentiation.


Subject(s)
Chromosomes, Human, Pair 7/genetics , Mouse Embryonic Stem Cells , Transcriptome , Williams Syndrome/genetics , Animals , Eukaryotic Initiation Factors/genetics , Humans , Mice , Muscle Proteins/genetics , Nuclear Proteins/genetics , Trans-Activators/genetics , Transcription Factors, TFII/genetics , Transcription Factors, TFIII/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...