Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 99
Filter
1.
Redox Biol ; 73: 103221, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38843768

ABSTRACT

Brain insulin resistance links the failure of energy metabolism with cognitive decline in both type 2 Diabetes Mellitus (T2D) and Alzheimer's disease (AD), although the molecular changes preceding overt brain insulin resistance remain unexplored. Abnormal biliverdin reductase-A (BVR-A) levels were observed in both T2D and AD and were associated with insulin resistance. Here, we demonstrate that reduced BVR-A levels alter insulin signaling and mitochondrial bioenergetics in the brain. Loss of BVR-A leads to IRS1 hyper-activation but dysregulates Akt-GSK3ß complex in response to insulin, hindering the accumulation of pGSK3ßS9 into the mitochondria. This event impairs oxidative phosphorylation and fosters the activation of the mitochondrial Unfolded Protein Response (UPRmt). Remarkably, we unveil that BVR-A is required to shuttle pGSK3ßS9 into the mitochondria. Our data sheds light on the intricate interplay between insulin signaling and mitochondrial metabolism in the brain unraveling potential targets for mitigating the development of brain insulin resistance and neurodegeneration.


Subject(s)
Glycogen Synthase Kinase 3 beta , Insulin Resistance , Insulin , Mitochondria , Oxidoreductases Acting on CH-CH Group Donors , Signal Transduction , Glycogen Synthase Kinase 3 beta/metabolism , Mitochondria/metabolism , Phosphorylation , Animals , Oxidoreductases Acting on CH-CH Group Donors/metabolism , Insulin/metabolism , Mice , Humans , Brain/metabolism , Insulin Receptor Substrate Proteins/metabolism , Unfolded Protein Response , Diabetes Mellitus, Type 2/metabolism , Proto-Oncogene Proteins c-akt/metabolism , Alzheimer Disease/metabolism
2.
Neurobiol Dis ; 196: 106523, 2024 Jun 15.
Article in English | MEDLINE | ID: mdl-38705491

ABSTRACT

Down syndrome (DS) is the most common condition with intellectual disability and is caused by trisomy of Homo sapiens chromosome 21 (HSA21). The increased dosage of genes on HSA21 is associated with early neurodevelopmental changes and subsequently at adult age with the development of Alzheimer-like cognitive decline. However, the molecular mechanisms promoting brain pathology along aging are still missing. The novel Ts66Yah model represents an evolution of the Ts65Dn, used in characterizing the progression of brain degeneration, and it manifest phenotypes closer to human DS condition. In this study we performed a longitudinal analysis (3-9 months) of adult Ts66Yah mice. Our data support the behavioural alterations occurring in Ts66Yah mice at older age with improvement in the detection of spatial memory defects and also a new anxiety-related phenotype. The evaluation of hippocampal molecular pathways in Ts66Yah mice, as effect of age, demonstrate the aberrant regulation of redox balance, proteostasis, stress response, metabolic pathways, programmed cell death and synaptic plasticity. Intriguingly, the genotype-driven changes observed in those pathways occur early promoting altered brain development and the onset of a condition of premature aging. In turn, aging may account for the subsequent hippocampal deterioration that fall in characteristic neuropathological features. Besides, the analysis of sex influence in the alteration of hippocampal mechanisms demonstrate only a mild effect. Overall, data collected in Ts66Yah provide novel and consolidated insights, concerning trisomy-driven processes that contribute to brain pathology in conjunction with aging. This, in turn, aids in bridging the existing gap in comprehending the intricate nature of DS phenotypes.


Subject(s)
Aging , Brain , Disease Models, Animal , Down Syndrome , Animals , Down Syndrome/genetics , Down Syndrome/pathology , Down Syndrome/metabolism , Aging/genetics , Aging/pathology , Aging/physiology , Mice , Male , Brain/metabolism , Brain/pathology , Female , Cognition/physiology , Hippocampus/metabolism , Hippocampus/pathology , Cognitive Dysfunction/genetics , Cognitive Dysfunction/metabolism , Cognitive Dysfunction/pathology , Mice, Transgenic
3.
FEBS Lett ; 2024 Mar 12.
Article in English | MEDLINE | ID: mdl-38472147

ABSTRACT

Redox reactions play a critical role for intracellular processes, including pathways involved in metabolism and signaling. Reactive oxygen species (ROS) act either as second messengers or generators of protein modifications, fundamental mechanisms for signal transduction. Disturbance of redox homeostasis is associated with many disorders. Among these, Alzheimer's disease is a neurodegenerative pathology that presents hallmarks of oxidative damage such as increased ROS production, decreased activity of antioxidant enzymes, oxidative modifications of macromolecules, and changes in mitochondrial homeostasis. Interestingly, alteration of redox homeostasis is closely associated with defects of energy metabolism, involving both carbohydrates and lipids, the major energy fuels for the cell. As the brain relies exclusively on glucose metabolism, defects of glucose utilization represent a harmful event for the brain. During aging, a progressive perturbation of energy metabolism occurs resulting in brain hypometabolism. This condition contributes to increase neuronal cell vulnerability ultimately resulting in cognitive impairment. The current review discusses the crosstalk between alteration of redox homeostasis and brain energy defects that seems to act in concert in promoting Alzheimer's neurodegeneration.

4.
Antioxidants (Basel) ; 12(1)2023 Jan 02.
Article in English | MEDLINE | ID: mdl-36670973

ABSTRACT

Down syndrome (DS) is the most frequent genetic cause of intellectual disability and is strongly associated with Alzheimer's disease (AD). Brain insulin resistance greatly contributes to AD development in the general population and previous studies from our group showed an early accumulation of insulin resistance markers in DS brain, already in childhood, and even before AD onset. Here we tested the effects promoted in Ts2Cje mice by the intranasal administration of the KYCCSRK peptide known to foster insulin signaling activation by directly interacting and activating the insulin receptor (IR) and the AKT protein. Therefore, the KYCCSRK peptide might represent a promising molecule to overcome insulin resistance. Our results show that KYCCSRK rescued insulin signaling activation, increased mitochondrial complexes levels (OXPHOS) and reduced oxidative stress levels in the brain of Ts2Cje mice. Moreover, we uncovered novel characteristics of the KYCCSRK peptide, including its efficacy in reducing DYRK1A (triplicated in DS) and BACE1 protein levels, which resulted in reduced AD-like neuropathology in Ts2Cje mice. Finally, the peptide elicited neuroprotective effects by ameliorating synaptic plasticity mechanisms that are altered in DS due to the imbalance between inhibitory vs. excitatory currents. Overall, our results represent a step forward in searching for new molecules useful to reduce intellectual disability and counteract AD development in DS.

5.
Neuropharmacology ; 224: 109350, 2023 02 15.
Article in English | MEDLINE | ID: mdl-36442649

ABSTRACT

Metformin is the most common anti-diabetic drug and a promising therapy for disorders beyond diabetes, including Rett syndrome (RTT), a rare neurologic disease characterized by severe intellectual disability. A 10-day-long treatment rescued aberrant mitochondrial activity and restrained oxidative stress in a female RTT mouse model. However, this treatment regimen did not improve the phenotype of RTT mice. In the present study, we demonstrate that a 4-month-long treatment with metformin (150 mg/Kg/day, delivered in drinking bottles) provides a selective normalization of cognitive flexibility defects in RTT female mice at an advanced stage of disease, but it does not affect their impaired general health status and abnormal motor skills. The 4-month-long treatment also rescues the reduced activity of mitochondrial respiratory chain complex activities, the defective brain ATP production and levels as well as the increased production of reactive oxidizing species in the whole blood of RTT mice. A significant boost of PGC-1α-dependent pathways related to mitochondrial biogenesis and antioxidant defense occurs in the brain of RTT mice that received the metformin treatment. Further studies will have to verify whether these effects may underlie its long-lasting beneficial effects on brain energy metabolism.


Subject(s)
Diabetes Mellitus , Metformin , Rett Syndrome , Animals , Female , Mice , Brain/metabolism , Cognition , Disease Models, Animal , Metformin/pharmacology , Rett Syndrome/drug therapy
6.
Adv Protein Chem Struct Biol ; 132: 49-87, 2022.
Article in English | MEDLINE | ID: mdl-36088079

ABSTRACT

Protein homeostasis or "proteostasis" represent the process that regulates the balance of the intracellular functional and "healthy" proteins. Proteostasis is fundamental to preserve physiological metabolic processes in the cell and it allow to respond to any given stimulus as the expression of components of the proteostasis network is customized according to the proteomic demands of different cellular environments. In conditions that promote unfolding/misfolding of proteins chaperones act as signaling molecules inducing extreme measures to either fix the problem or destroy unfolded proteins. When the chaperone machinery fails under pathological insults unfolded proteins induce the endoplasmic reticulum (ER) stress activating the unfolded protein response (UPR) machinery. The activation of the UPR restores ER proteostasis primarily through the transcriptional remodeling of ER protein folding, trafficking, and degradation pathways, such as the ubiquitin proteasome system (UPS). If these mechanisms do not manage to clear the aberrant proteins, proteasome overload and become defective, and misfolded proteins may form aggregates thus extending the UPR mechanism. These aggregates are then attempted to be cleared by macroautophagy. Impaired proteostasis promote the accumulation of misfolded proteins that exacerbate the damage to chaperones, surveillance systems and/or degradative activities. Remarkably, the removal of toxic misfolded proteins is critical for all cells, but it is especially significant in neurons since these cannot be readily replaced. In neurons, the maintenance of efficient proteostasis is essential to healthy aging since the dysregulation of the proteostasis network can lead to neurodegenerative disease. Each of these brain pathologies is characterized by the repeated misfolding of one of more peculiar proteins, which evade both the protein folding machinery and cellular degradation mechanisms and begins to form aggregates that nucleate out into large fibrillar aggregates. In this chapter we describe the mechanisms, associated with faulty proteostasis, that promote the formation of protein aggregates, amyloid fibrils, intracellular, and extracellular inclusions in the most common nondegenerative disorders also referred to as protein misfolding disorders.


Subject(s)
Neurodegenerative Diseases , Proteostasis , Homeostasis , Humans , Molecular Chaperones/metabolism , Neurodegenerative Diseases/metabolism , Proteasome Endopeptidase Complex/metabolism , Proteomics , Proteostasis/physiology
7.
Free Radic Biol Med ; 183: 1-13, 2022 04.
Article in English | MEDLINE | ID: mdl-35283228

ABSTRACT

The cells possess several mechanisms to counteract the over-production of reactive oxygen species (ROS) and reactive nitrogen species (RNS), including enzymes such as superoxide dismutase, catalase and glutathione peroxidase. Moreover, an important sensor involved in the anti-oxidant response is KEAP1-NRF2-ARE signaling complex. Under oxidative stress (OS), the transcription factor NRF2 can dissociate from the KEAP1-complex in the cytosol and translocate into the nucleus to promote the transcriptional activation of anti-oxidant genes, such as heme oxygenase 1 and NADPH quinone oxidoreductase. Within this context, the activation of NRF2 response is further regulated by BACH1, a transcription repressor, that compete with the KEAP1-NRF2-ARE complex. In this work, we focused on the role of BACH1/NRF2 ratio in the regulation of the anti-oxidant response, proposing their antithetical relation as a valuable target for a therapeutic strategy to test drugs able to exert neuroprotective effects, notably in aging and neurodegenerative diseases. Among these, Down syndrome (DS) is a complex genetic disorder characterized by BACH1 gene triplication that likely results in the impairment of NRF2 causing increased OS. Our results revealed that BACH1 overexpression alters the BACH1/NRF2 ratio in the nucleus and disturbs the induction of antioxidant response genes ultimately resulting in the accumulation of oxidative damage both in Ts2Cje mice (a mouse model of DS) and human DS lymphoblastoid cell lines (LCLs). Based on this evidence, we tested Caffeic Acid Phenethyl Ester (CAPE) and the synthetic analogue VP961, which have been proven to modulate NRF2 activity. We showed that CAPE and VP961 administration to DS LCLs was able to promote NRF2 nuclear translocation, which resulted in the amelioration of antioxidant response. Overall, our study supports the hypothesis that BACH1 triplication in DS subjects is implicated in the alteration of redox homeostasis and therapeutic strategies to overcome this effect are under investigation in our laboratory.


Subject(s)
Basic-Leucine Zipper Transcription Factors , Down Syndrome , NF-E2-Related Factor 2 , Animals , Basic-Leucine Zipper Transcription Factors/genetics , Basic-Leucine Zipper Transcription Factors/metabolism , Caffeic Acids , Humans , Kelch-Like ECH-Associated Protein 1/genetics , Kelch-Like ECH-Associated Protein 1/metabolism , Mice , NF-E2-Related Factor 2/genetics , NF-E2-Related Factor 2/metabolism , Oxidative Stress , Phenylethyl Alcohol/analogs & derivatives
8.
Free Radic Biol Med ; 176: 16-33, 2021 11 20.
Article in English | MEDLINE | ID: mdl-34530075

ABSTRACT

Alzheimer's disease (AD) is the most common form of dementia in the elderly followed by vascular dementia. In addition to clinically diagnosed dementia, cognitive dysfunction has been reported in diabetic patients. Recent studies are now beginning to recognize type 2 diabetes mellitus (T2DM), characterized by chronic hyperglycemia and insulin resistance, as a risk factor for AD and other cognitive disorders. While studies on insulin action have remained traditionally in the domain of peripheral tissues, the detrimental effects of insulin resistance in the central nervous system on cognitive dysfunction are increasingly being reported in recent clinical and preclinical studies. Brain functions require continuous supply of glucose and oxygen and a tight regulation of metabolic processes. Loss of this metabolic regulation has been proposed to be a contributor to memory dysfunction associated with neurodegeneration. Within the above scenario, this review will focus on the interplay among oxidative stress (OS), insulin resistance and AMPK dysfunctions in the brain by highlighting how these neurotoxic events contribute to neurodegeneration. We provide an overview on the detrimental effects of OS on proteins regulating insulin signaling and how these alterations impact cell metabolic dysfunctions through AMPK dysregulation. Such processes, we assert, are critically involved in the molecular pathways that underlie AD.


Subject(s)
Alzheimer Disease , Diabetes Mellitus, Type 2 , Insulin Resistance , AMP-Activated Protein Kinases/genetics , Aged , Brain , Diabetes Mellitus, Type 2/complications , Humans , Oxidative Stress
9.
Int J Mol Sci ; 22(7)2021 Apr 03.
Article in English | MEDLINE | ID: mdl-33916835

ABSTRACT

The disturbance of protein O-GlcNAcylation is emerging as a possible link between altered brain metabolism and the progression of neurodegeneration. As observed in brains with Alzheimer's disease (AD), flaws of the cerebral glucose uptake translate into reduced protein O-GlcNAcylation, which promote the formation of pathological hallmarks. A high-fat diet (HFD) is known to foster metabolic dysregulation and insulin resistance in the brain and such effects have been associated with the reduction of cognitive performances. Remarkably, a significant role in HFD-related cognitive decline might be played by aberrant protein O-GlcNAcylation by triggering the development of AD signature and mitochondrial impairment. Our data support the impairment of total protein O-GlcNAcylation profile both in the brain of mice subjected to a 6-week high-fat-diet (HFD) and in our in vitro transposition on SH-SY5Y cells. The reduction of protein O-GlcNAcylation was associated with the development of insulin resistance, induced by overfeeding (i.e., defective insulin signaling and reduced mitochondrial activity), which promoted the dysregulation of the hexosamine biosynthetic pathway (HBP) flux, through the AMPK-driven reduction of GFAT1 activation. Further, we observed that a HFD induced the selective impairment of O-GlcNAcylated-tau and of O-GlcNAcylated-Complex I subunit NDUFB8, thus resulting in tau toxicity and reduced respiratory chain functionality respectively, highlighting the involvement of this posttranslational modification in the neurodegenerative process.


Subject(s)
Alzheimer Disease/metabolism , Brain/metabolism , Diet, High-Fat/adverse effects , Mitochondria/metabolism , Nerve Tissue Proteins/metabolism , Acylation , Alzheimer Disease/chemically induced , Alzheimer Disease/pathology , Animals , Brain/pathology , Cell Line, Tumor , Male , Mice , Mitochondria/pathology
10.
Biomolecules ; 11(2)2021 02 11.
Article in English | MEDLINE | ID: mdl-33670211

ABSTRACT

Down syndrome (DS) is the most common genomic disorder characterized by the increased incidence of developing early Alzheimer's disease (AD). In DS, the triplication of genes on chromosome 21 is intimately associated with the increase of AD pathological hallmarks and with the development of brain redox imbalance and aberrant proteostasis. Increasing evidence has recently shown that oxidative stress (OS), associated with mitochondrial dysfunction and with the failure of antioxidant responses (e.g., SOD1 and Nrf2), is an early signature of DS, promoting protein oxidation and the formation of toxic protein aggregates. In turn, systems involved in the surveillance of protein synthesis/folding/degradation mechanisms, such as the integrated stress response (ISR), the unfolded stress response (UPR), and autophagy, are impaired in DS, thus exacerbating brain damage. A number of pre-clinical and clinical studies have been applied to the context of DS with the aim of rescuing redox balance and proteostasis by boosting the antioxidant response and/or inducing the mechanisms of protein re-folding and clearance, and at final of reducing cognitive decline. So far, such therapeutic approaches demonstrated their efficacy in reverting several aspects of DS phenotype in murine models, however, additional studies aimed to translate these approaches in clinical practice are still needed.


Subject(s)
Brain/pathology , Down Syndrome/metabolism , Down Syndrome/pathology , Oxidative Stress , Antioxidants/metabolism , Autophagy , Brain/metabolism , Humans , Proteasome Endopeptidase Complex/metabolism , Proteostasis , Ubiquitin/metabolism , Unfolded Protein Response
11.
Int J Mol Sci ; 22(3)2021 Jan 26.
Article in English | MEDLINE | ID: mdl-33530349

ABSTRACT

Tauopathies are a group of more than twenty known disorders that involve progressive neurodegeneration, cognitive decline and pathological tau accumulation. Current therapeutic strategies provide only limited, late-stage symptomatic treatment. This is partly due to lack of understanding of the molecular mechanisms linking tau and cellular dysfunction, especially during the early stages of disease progression. In this study, we treated early stage tau transgenic mice with a multi-target kinase inhibitor to identify novel substrates that contribute to cognitive impairment and exhibit therapeutic potential. Drug treatment significantly ameliorated brain atrophy and cognitive function as determined by behavioral testing and a sensitive imaging technique called manganese-enhanced magnetic resonance imaging (MEMRI) with quantitative R1 mapping. Surprisingly, these benefits occurred despite unchanged hyperphosphorylated tau levels. To elucidate the mechanism behind these improved cognitive outcomes, we performed quantitative proteomics to determine the altered protein network during this early stage in tauopathy and compare this model with the human Alzheimer's disease (AD) proteome. We identified a cluster of preserved pathways shared with human tauopathy with striking potential for broad multi-target kinase intervention. We further report high confidence candidate proteins as novel therapeutically relevant targets for the treatment of tauopathy. Proteomics data are available via ProteomeXchange with identifier PXD023562.


Subject(s)
Neurons/drug effects , Neurons/metabolism , Protein Kinase Inhibitors/pharmacology , Tauopathies/etiology , Tauopathies/metabolism , Animals , Brain/metabolism , Brain/pathology , Disease Models, Animal , Hippocampus/drug effects , Hippocampus/metabolism , Hippocampus/pathology , Humans , Mice , Mice, Transgenic , Neurodegenerative Diseases/diagnosis , Neurodegenerative Diseases/drug therapy , Neurodegenerative Diseases/etiology , Neurodegenerative Diseases/metabolism , Phosphorylation , Protein Kinase Inhibitors/therapeutic use , Proteome , Proteomics/methods , Severity of Illness Index , Tauopathies/diagnosis , Tauopathies/drug therapy , Unfolded Protein Response , eIF-2 Kinase/metabolism , tau Proteins/metabolism
12.
Free Radic Biol Med ; 165: 152-170, 2021 03.
Article in English | MEDLINE | ID: mdl-33516914

ABSTRACT

Dysregulation of brain insulin signaling with reduced downstream neuronal survival and plasticity mechanisms are fundamental abnormalities observed in Alzheimer disease (AD). This phenomenon, known as brain insulin resistance, is associated with poor cognitive performance and is driven by the inhibition of IRS1. Since Down syndrome (DS) and AD neuropathology share many common features, we investigated metabolic aspects of neurodegeneration in DS and whether they contribute to early onset AD in DS. We evaluated levels and activation of proteins belonging to the insulin signaling pathway (IR, IRS1, BVR-A, MAPK, PTEN, Akt, GSK3ß, PKCζ, AS160, GLUT4) in the frontal cortex of Ts65dn (DS model) (n = 5-6/group) and euploid mice (n = 6/group) at different ages (1, 3, 9 and 18 months). Furthermore, we analyzed whether changes of brain insulin signaling were associated with alterations of: (i) proteins regulating brain energy metabolism (mitochondrial complexes, hexokinase-II, Sirt1); (ii) oxidative stress (OS) markers (iii) APP cleavage; and (iv) proteins mediating synaptic plasticity mechanisms (PSD95, syntaxin-1 and BDNF). Ts65dn mice showed an overall impairment of the above-mentioned pathways, mainly characterized by defects of proteins activation state. Such alterations start early in life (at 1 month, during brain maturation). In particular, accumulation of inhibited IRS1, together with the uncoupling among the proteins downstream from IRS1 (brain insulin resistance), characterize Ts65dn mice. Furthermore, reduced levels of mitochondrial complexes and Sirt1, as well as increased indices of OS also were observed. These alterations precede the accumulation of APP-C99 in Ts65dn mice. Tellingly, oxidative stress levels were negatively associated with IR, IRS1 and AS160 activation as well as mitochondrial complexes levels in Ts65dn mice, suggesting a role for oxidative stress in the observed alterations. We propose that a close link exists among brain insulin resistance, mitochondrial defects and OS that contributes to brain dysfunctions observed in DS, likely favoring the development of AD in DS.


Subject(s)
Down Syndrome , Insulin Resistance , Animals , Brain , Disease Models, Animal , Down Syndrome/genetics , Mice , Mice, Inbred C57BL , Mice, Transgenic , Oxidative Stress
13.
Neurotherapeutics ; 18(1): 340-363, 2021 01.
Article in English | MEDLINE | ID: mdl-33258073

ABSTRACT

Protein O-GlcNAcylation is a nutrient-related post-translational modification that, since its discovery some 30 years ago, has been associated with the development of neurodegenerative diseases. As reported in Alzheimer's disease (AD), flaws in the cerebral glucose uptake translate into reduced hexosamine biosynthetic pathway flux and subsequently lead to aberrant protein O-GlcNAcylation. Notably, the reduction of O-GlcNAcylated proteins involves also tau and APP, thus promoting their aberrant phosphorylation in AD brain and the onset of AD pathological markers. Down syndrome (DS) individuals are characterized by the early development of AD by the age of 60 and, although the two conditions present the same pathological hallmarks and share the alteration of many molecular mechanisms driving brain degeneration, no evidence has been sought on the implication of O-GlcNAcylation in DS pathology. Our study aimed to unravel for the first time the role of protein O-GlcNacylation in DS brain alterations positing the attention of potential trisomy-related mechanisms triggering the aberrant regulation of OGT/OGA cycle. We demonstrate the disruption of O-GlcNAcylation homeostasis, as an effect of altered OGT and OGA regulatory mechanism, and confirm the relevance of O-GlcNAcylation in the appearance of AD hallmarks in the brain of a murine model of DS. Furthermore, we provide evidence for the neuroprotective effects of brain-targeted OGA inhibition. Indeed, the rescue of OGA activity was able to restore protein O-GlcNAcylation, and reduce AD-related hallmarks and decreased protein nitration, possibly as effect of induced autophagy.


Subject(s)
Amyloid beta-Protein Precursor/metabolism , Down Syndrome/metabolism , N-Acetylglucosaminyltransferases/metabolism , beta-N-Acetylhexosaminidases/metabolism , tau Proteins/metabolism , Animals , Blotting, Western , Brain/metabolism , Brain/pathology , Disease Models, Animal , Down Syndrome/pathology , Female , Fluorescent Antibody Technique , Immunoprecipitation , Male , Mice , N-Acetylglucosaminyltransferases/drug effects , Pyrans/pharmacology , Real-Time Polymerase Chain Reaction , Thiazoles/pharmacology , beta-N-Acetylhexosaminidases/drug effects
14.
Prog Neurobiol ; 196: 101892, 2021 01.
Article in English | MEDLINE | ID: mdl-32795489

ABSTRACT

A major challenge in neurobiology is the identification of the mechanisms by which protein misfolding leads to cellular toxicity. Many neurodegenerative disorders, in which aberrant protein conformers aggregate into pathological inclusions, present the chronic activation of the PERK branch of the unfolded protein response. The adaptive effects of the PERK pathway include reduction of translation by transient inhibition of eIF2α and antioxidant protein production via induction of Nrf2 transcription factor. In contrast, PERK prolonged activation leads to sustained reduction in protein synthesis and induction of cell death pathways. To further investigate the role of the PERK pathway in neurodegenerative disorders, we focused on Down syndrome (DS), in which aging confers a high risk of Alzheimer disease (AD). By investigating human DS frontal cortices, we found early and sustained PERK activation associated with the induction of eIF2α and ATF4 downstream signals. We also observed that the Nrf2 response is uncoupled from PERK and its antioxidant effects are repressed in a mechanism implicating the transcription repressor Bach1. The pharmacological inhibition of PERK in DS mice reduced eIF2α-related translational repression and promoted Nrf2 nuclear translocation, favoring the rescue of Nrf2/Bach1 imbalance. The further analysis of peripheral cells from living DS individuals provided strong support of the pathological link between PERK and trisomy 21. Our results suggest that failure to regulate the PERK pathway is a peculiar characteristic of DS pathology and it may represent an essential step to promote cellular dysfunction, which actively contributes in the brain to the early development of AD.


Subject(s)
Alzheimer Disease/metabolism , Down Syndrome/metabolism , Protein Kinase Inhibitors/pharmacology , Unfolded Protein Response/physiology , eIF-2 Kinase/antagonists & inhibitors , eIF-2 Kinase/metabolism , Adolescent , Adult , Aged , Aged, 80 and over , Animals , Autopsy , Basic-Leucine Zipper Transcription Factors/metabolism , Child , Disease Models, Animal , Female , Humans , Male , Mice , Mice, Transgenic , Middle Aged , NF-E2-Related Factor 2/metabolism , Young Adult
15.
Antioxidants (Basel) ; 9(11)2020 Nov 11.
Article in English | MEDLINE | ID: mdl-33187268

ABSTRACT

Down syndrome (DS) is the most common chromosomal disorder and the leading genetic cause of intellectual disability in humans, which results from the triplication of chromosome 21. To search for biomarkers for the early detection and exploration of the disease mechanisms, here, we investigated the protein expression signature of peripheral blood mononuclear cells (PBMCs) in DS children compared with healthy donors (HD) by using an in-depth label-free shotgun proteomics approach. Identified proteins are found associated with metabolic pathways, cellular trafficking, DNA structure, stress response, cytoskeleton network, and signaling pathways. The results showed that a well-defined number of dysregulated pathways retain a prominent role in mediating DS pathological features. Further, proteomics results are consistent with published study in DS and provide evidences that increased oxidative stress and the increased induction of stress related response, is a participant in DS pathology. In addition, the expression levels of some key proteins have been validated by Western blot analysis while protein carbonylation, as marker of protein oxidation, was investigated. The results of this study propose that PBMCs from DS children might be in an activated state where endoplasmic reticulum stress and increased production of radical species are one of the primary events contributing to multiple DS pathological features.

16.
Antioxidants (Basel) ; 9(8)2020 07 27.
Article in English | MEDLINE | ID: mdl-32727065

ABSTRACT

Biliverdin reductase-A (BVR-A) impairment is associated with increased accumulation of oxidatively-damaged proteins along with the impairment of autophagy in the brain during neurodegenerative disorders. Reduced autophagy inhibits the clearance of misfolded proteins, which then form neurotoxic aggregates promoting neuronal death. The aim of our study was to clarify the role for BVR-A in the regulation of the mTOR/autophagy axis by evaluating age-associated changes (2, 6 and 11 months) in cerebral cortex samples collected from BVR-A knock-out (BVR-A-/-) and wild-type (WT) mice. Our results show that BVR-A deficiency leads to the accumulation of oxidatively-damaged proteins along with mTOR hyper-activation in the cortex. This process starts in juvenile mice and persists with aging. mTOR hyper-activation is associated with the impairment of autophagy as highlighted by reduced levels of Beclin-1, LC3, LC3II/I ratio, Atg5-Atg12 complex and Atg7 in the cortex of BVR-A-/- mice. Furthermore, we have identified the dysregulation of AMP-activated protein kinase (AMPK) as a critical event driving mTOR hyper-activation in the absence of BVR-A. Overall, our results suggest that BVR-A is a new player in the regulation of autophagy, which may be targeted to arrive at novel therapeutics for diseases involving impaired autophagy.

17.
Microorganisms ; 8(7)2020 Jun 29.
Article in English | MEDLINE | ID: mdl-32610629

ABSTRACT

Compelling evidence supports the role of oxidative stress in Alzheimer's disease (AD) pathophysiology. Interestingly, Herpes simplex virus-1 (HSV-1), a neurotropic virus that establishes a lifelong latent infection in the trigeminal ganglion followed by periodic reactivations, has been reportedly linked both to AD and to oxidative stress conditions. Herein, we analyzed, through biochemical and redox proteomic approaches, the mouse model of recurrent HSV-1 infection we previously set up, to investigate whether multiple virus reactivations induced oxidative stress in the mouse brain and affected protein function and related intracellular pathways. Following multiple HSV-1 reactivations, we found in mouse brains increased levels of oxidative stress hallmarks, including 4-hydroxynonenal (HNE), and 13 HNE-modified proteins whose levels were found significantly altered in the cortex of HSV-1-infected mice compared to controls. We focused on two proteins previously linked to AD pathogenesis, i.e., glucose-regulated protein 78 (GRP78) and collapsin response-mediated protein 2 (CRMP2), which are involved in the unfolded protein response (UPR) and in microtubule stabilization, respectively. We found that recurrent HSV-1 infection disables GRP78 function and activates the UPR, whereas it prevents CRMP2 function in mouse brains. Overall, these data suggest that repeated HSV-1 reactivation into the brain may contribute to neurodegeneration also through oxidative damage.

18.
J Clin Med ; 9(6)2020 Jun 01.
Article in English | MEDLINE | ID: mdl-32492904

ABSTRACT

Metformin is the first-line therapy for diabetes, even in children, and a promising attractive candidate for drug repurposing. Mitochondria are emerging as crucial targets of metformin action both in the periphery and in the brain. The present study evaluated whether treatment with metformin may rescue brain mitochondrial alterations and contrast the increased oxidative stress in a validated mouse model of Rett syndrome (RTT), a rare neurologic disorder of monogenic origin characterized by severe behavioral and physiological symptoms. No cure for RTT is available. In fully symptomatic RTT mice (12 months old MeCP2-308 heterozygous female mice), systemic treatment with metformin (100 mg/kg ip for 10 days) normalized the reduced mitochondrial ATP production and ATP levels in the whole-brain, reduced brain oxidative damage, and rescued the increased production of reactive oxidizing species in blood. A 10-day long treatment with metformin also boosted pathways related to mitochondrial biogenesis and antioxidant defense in the brain of metformin-treated RTT mice. This treatment regimen did not improve general health status and motor dysfunction in RTT mice at an advanced stage of the disease. Present results provide evidence that systemic treatment with metformin may represent a novel, repurposable therapeutic strategy for RTT.

19.
Cancers (Basel) ; 12(1)2020 01 01.
Article in English | MEDLINE | ID: mdl-31906275

ABSTRACT

The ultraviolet (UV) component of solar radiation is the major driving force of skin carcinogenesis. Most of studies on UV carcinogenesis actually focus on DNA damage while their proteome-damaging ability and its contribution to skin carcinogenesis have remained largely underexplored. A redox proteomic analysis of oxidized proteins in solar-induced neoplastic skin lesion and perilesional areas has been conducted showing that the protein oxidative burden mostly concerns a selected number of proteins participating to a defined set of functions, namely: chaperoning and stress response; protein folding/refolding and protein quality control; proteasomal function; DNA damage repair; protein- and vesicle-trafficking; cell architecture, adhesion/extra-cellular matrix (ECM) interaction; proliferation/oncosuppression; apoptosis/survival, all of them ultimately concurring either to structural damage repair or to damage detoxication and stress response. In peri-neoplastic areas the oxidative alterations are conducive to the persistence of genetic alterations, dysfunctional apoptosis surveillance, and a disrupted extracellular environment, thus creating the condition for transformant clones to establish, expand and progress. A comparatively lower burden of oxidative damage is observed in neoplastic areas. Such a finding can reflect an adaptive selection of best fitting clones to the sharply pro-oxidant neoplastic environment. In this context the DNA damage response appears severely perturbed, thus sustaining an increased genomic instability and an accelerated rate of neoplastic evolution. In conclusion UV radiation, in addition to being a cancer-initiating agent, can act, through protein oxidation, as a cancer-promoting agent and as an inducer of genomic instability concurring with the neoplastic progression of established lesions.

20.
Neurobiol Dis ; 137: 104772, 2020 04.
Article in English | MEDLINE | ID: mdl-31987911

ABSTRACT

Dysregulation of insulin signaling pathway with reduced downstream neuronal survival and plasticity mechanisms is a fundamental abnormality observed in Alzheimer's disease (AD) brain. This phenomenon, known as brain insulin resistance, is associated with poor cognitive performance and is driven by the uncoupling of insulin receptor (IR) from its direct substrate (IRS1). Considering that Down syndrome (DS) and AD neuropathology share many common features, we investigated metabolic aspects of neurodegeneration, i.e., brain insulin resistance, in DS and whether it would contribute to early onset AD in DS population. Changes of levels and activation of main brain proteins belonging to the insulin signaling pathway (i.e., IR, IRS1, PTEN, GSK3ß, PKCζ, AS160, GLUT4) were evaluated. Furthermore, we analyzed whether changes of these proteins were associated with alterations of: (i) proteins regulating brain energy metabolism; (ii) APP cleavage; and (ii) regulation of synaptic plasticity mechanisms in post-mortem brain samples collected from people with DS before and after the development of AD pathology (DSAD) compared with their age-matched controls. We found that DS cases were characterized by key markers of brain insulin resistance (reduced IR and increased IRS1 inhibition) early in life. Furthermore, downstream from IRS1, an overall uncoupling among the proteins of insulin signaling was observed. Dysregulated brain insulin signaling was associated with reduced hexokinase II (HKII) levels and proteins associated with mitochondrial complexes levels as well as with reduced levels of syntaxin in DS cases. Tellingly, these alterations precede the development of AD neuropathology and clinical presentations in DS. We propose that markers of brain insulin resistance rise earlier with age in DS compared with the general population and may contribute to the cognitive impairment associated with the early development of AD in DS.


Subject(s)
Alzheimer Disease/metabolism , Brain/metabolism , Down Syndrome/metabolism , Insulin Resistance/physiology , Adolescent , Adult , Aged , Alzheimer Disease/complications , Child , Child, Preschool , Down Syndrome/complications , Down Syndrome/pathology , Energy Metabolism/physiology , Female , Humans , Male , Middle Aged , Receptor, Insulin/metabolism , Signal Transduction/physiology , Young Adult
SELECTION OF CITATIONS
SEARCH DETAIL
...