Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Language
Publication year range
1.
J Biomol Struct Dyn ; 26(1): 75-82, 2008 Aug.
Article in English | MEDLINE | ID: mdl-18533728

ABSTRACT

Maurotoxin (MTX) is a 34-mer scorpion toxin cross-linked by four disulphide bridges that acts on various K+ channel types. It folds according to an alpha/beta scaffold, i.e., a helix connected to a two stranded beta-sheet by two disulphide bridges. In a former study, various parameters that affect the oxidation and folding of the reduced form of synthetic MTX were investigated in vitro. It was found that MTX achieves its final 3-D structure by evolving over time through a series of oxidation intermediates, from the least to the most oxidized species. MTX oxidative intermediates can be studied by iodoacetamide alkylation of free cysteine residues followed by mass spectrometry analysis. Here, we have analysed the effect of Cu2+ (0.1 to 50 mM) on the kinetics of MTX oxidative folding and found that it dramatically speeds up the formation of the four-disulphide bridged, native-like, MTX (maximal production within 30 minutes instead of > 60 hours). This catalysing effect of Cu2+ was found to be concentration-dependent, reaching a plateau at 10 mM copper ions. Cu2+ was also found to prevent the slow transition of a three disulphide-bridged MTX intermediate towards the final four disulphide-bridged product (12% of total MTX). The data are discussed in light of the potential effects of Cu2+ on MTX secondary structure formation, disulphide bridging and peptidyl prolyl cis-trans isomerization.


Subject(s)
Copper/pharmacology , Disulfides/chemistry , Neurotoxins/chemistry , Protein Folding , Scorpion Venoms/chemistry , Scorpion Venoms/metabolism , Alkylation , Amino Acid Sequence , Animals , Circular Dichroism , In Vitro Techniques , Iodoacetamide/pharmacology , Mice , Mice, Inbred C57BL , Molecular Sequence Data , Oxidation-Reduction , Protein Structure, Secondary , Scorpion Venoms/chemical synthesis , Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization
2.
J Neuroimmunol ; 151(1-2): 55-65, 2004 Jun.
Article in English | MEDLINE | ID: mdl-15145604

ABSTRACT

Pixantrone is less cardiotoxic and is similarly effective to mitoxantrone (MTX) as an antineoplastic drug. In our study, pixantrone reduced the severity of acute and decreased the relapse rate of chronic relapsing experimental allergic encephalomyelitis (EAE) in rats. A marked and long-lasting decrease in CD3+, CD4+, CD8+ and CD45RA+ blood cells and reduced anti-MBP titers were observed with both pixantrone and MTX. In vitro mitogen- and antigen-induced T-cell proliferation tests of human and rodents cells evidenced that pixantrone was effective at concentrations which can be effectively obtained after i.v. administration in humans. Cardiotoxicity was present only in MTX-treated rats. The effectiveness and the favorable safety profile makes pixantrone a most promising immunosuppressant agent for clinical use in multiple sclerosis (MS).


Subject(s)
Encephalomyelitis, Autoimmune, Experimental/drug therapy , Immunosuppressive Agents/therapeutic use , Isoquinolines/therapeutic use , T-Lymphocytes/drug effects , Acute Disease , Animals , Cell Division/drug effects , Cells, Cultured , Chronic Disease , Female , Humans , Immunosuppressive Agents/adverse effects , Isoquinolines/adverse effects , Lymphocyte Count , Mitoxantrone/adverse effects , Mitoxantrone/therapeutic use , Rats , T-Lymphocytes/immunology
3.
Biochem J ; 358(Pt 3): 681-92, 2001 Sep 15.
Article in English | MEDLINE | ID: mdl-11535129

ABSTRACT

Maurotoxin (MTX) is a 34-mer scorpion toxin cross-linked by four disulphide bridges that acts on various K(+) channel subtypes. MTX adopts a disulphide bridge organization of the type C1-C5, C2-C6, C3-C4 and C7-C8, and folds according to the common alpha/beta scaffold reported for other known scorpion toxins. Here we have investigated the process and kinetics of the in vitro oxidation/folding of reduced synthetic L-MTX (L-sMTX, where L-MTX contains only L-amino acid residues). During the oxidation/folding of reduced L-sMTX, the oxidation intermediates were blocked by iodoacetamide alkylation of free cysteine residues, and analysed by MS. The L-sMTX intermediates appeared sequentially over time from the least (intermediates with one disulphide bridge) to the most oxidized species (native-like, four-disulphide-bridged L-sMTX). The mathematical formulation of the diffusion-collision model being inadequate to accurately describe the kinetics of oxidation/folding of L-sMTX, we have formulated a derived mathematical description that better fits the experimental data. Using this mathematical description, we have compared for the first time the oxidation/folding of L-sMTX with that of D-sMTX, its stereoisomer that contains only D-amino acid residues. Several experimental parameters, likely to affect the oxidation/folding process, were studied further; these included temperature, pH, ionic strength, redox potential and concentration of reduced toxin. We also assessed the effects of some cellular enzymes, peptidylprolyl cis-trans isomerase (PPIase) and protein disulphide isomerase (PDI), on the folding pathways of reduced L-sMTX and D-sMTX. All the parameters tested affect the oxidative folding of sMTX, and the kinetics of this process were indistinguishable for L-sMTX and D-sMTX, except when stereospecific enzymes were used. The most efficient conditions were found to be: 50 mM Tris/HCl/1.4 mM EDTA, pH 7.5, supplemented by 0.5 mM PPIase and 50 units/ml PDI for 0.1 mM reduced compound. These data represent the first report of potent stereoselective effects of cellular enzymes on the oxidation/folding of a scorpion toxin.


Subject(s)
Protein Folding , Scorpion Venoms/chemistry , Scorpion Venoms/metabolism , Alkylation , Disulfides , Humans , Indicators and Reagents , Iodoacetamide , Kinetics , Models, Theoretical , Neurotoxins/chemistry , Oxidation-Reduction , Peptidylprolyl Isomerase/metabolism , Protein Disulfide-Isomerases/metabolism , Recombinant Proteins/metabolism , Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization
4.
FEBS Lett ; 489(2-3): 202-7, 2001 Feb 02.
Article in English | MEDLINE | ID: mdl-11165250

ABSTRACT

Maurotoxin (MTX) is a 34-residue toxin that has been isolated from the venom of the chactidae scorpion Scorpio maurus palmatus, and characterized. Together with Pi1 and HsTx1, MTX belongs to a family of short-chain four-disulfide-bridged scorpion toxins acting on potassium channels. However, contrary to other members of this family, MTX exhibits an uncommon disulfide bridge organization of the type C1-C5, C2-C6, C3-C4 and C7-C8, versus C1-C5, C2-C6, C3-C7 and C4-C8 for both Pi1 and HsTx1. Here, we report that the substitution of MTX proline residues located at positions 12 and/or 20, adjacent to C3 (Cys(13)) and C4 (Cys(19)), results in conventional Pi1- and HsTx1-like arrangement of the half-cystine pairings. In this case, this novel disulfide bridge arrangement is without obvious incidence on the overall three-dimensional structure of the toxin. Pharmacological assays of this structural analog, [A(12),A(20)]MTX, reveal that the blocking activities on Shaker B and rat Kv1.2 channels remain potent whereas the peptide becomes inactive on rat Kv1.3. These data indicate, for the first time, that discrete point mutations in MTX can result in a marked reorganization of the half-cystine pairings, accompanied with a novel pharmacological profile for the analog.


Subject(s)
Disulfides/chemistry , Potassium Channels, Voltage-Gated , Proline/chemistry , Scorpion Venoms/chemistry , Amino Acid Sequence , Animals , Apamin/metabolism , Binding, Competitive , Dose-Response Relationship, Drug , Female , Iodine Radioisotopes , Kv1.2 Potassium Channel , Kv1.3 Potassium Channel , Magnetic Resonance Spectroscopy , Membrane Potentials/drug effects , Molecular Sequence Data , Mutation , Oocytes/drug effects , Oocytes/metabolism , Oocytes/physiology , Peptides/antagonists & inhibitors , Peptides/genetics , Peptides/physiology , Potassium Channel Blockers , Potassium Channels/genetics , Potassium Channels/physiology , Proline/genetics , Protein Conformation , Rats , Scorpion Venoms/metabolism , Scorpion Venoms/pharmacology , Sequence Analysis, Protein , Shaker Superfamily of Potassium Channels , Synaptosomes/metabolism , Xenopus
5.
Biol Chem ; 382(11): 1621-8, 2001 Nov.
Article in English | MEDLINE | ID: mdl-11767952

ABSTRACT

We created a construct encoding a peptide known to mimic the binding properties of biotin fused to the carboxy-terminus of a scFv fragment that binds a scorpion toxin (AahI). This fusion protein was produced in the periplasm of bacteria and purified to homogeneity by single-step affinity chromatography on streptavidin-agarose with a yield close to 1 mg/l. DNA sequencing, dot blot and mass spectrometric analyses demonstrated the integrity of the soluble immunoconjugate. Fusion to the streptavidin-binding peptide did not affect the ability of the scFv to recognize its antigen with a high affinity (Kd = 2.3 x 10(-10) M). Similarly, the streptavidin-binding property was not impaired in the fusion protein. Thus, the immunoconjugate was bifunctional and had a low molecular mass of 28 kDa. This enabled us to develop rapid and sensitive immunoassays for the specific detection of the toxin AahI accurately to 0.6 ng/ml, opening up new perspectives for the diagnosis of envenomations.


Subject(s)
Carrier Proteins/chemistry , Neurotoxins/chemistry , Scorpion Venoms/chemistry , Amino Acid Sequence , Cloning, Molecular , Enzyme-Linked Immunosorbent Assay , Molecular Sequence Data , Recombinant Fusion Proteins/chemistry , Recombinant Proteins/chemistry
6.
J Biol Chem ; 275(50): 39394-402, 2000 Dec 15.
Article in English | MEDLINE | ID: mdl-10970898

ABSTRACT

Maurotoxin (MTX) is a scorpion toxin acting on several K(+) channel subtypes. It is a 34-residue peptide cross-linked by four disulfide bridges that are in an "uncommon" arrangement of the type C1-C5, C2-C6, C3-C4, and C7-C8 (versus C1-C5, C2-C6, C3-C7, and C4-C8 for Pi1 or HsTx1, two MTX-related scorpion toxins). We report here that a single mutation in MTX, in either position 15 or 33, resulted in a shift from the MTX toward the Pi1/HsTx1 disulfide bridge pattern. This shift is accompanied by structural and pharmacological changes of the peptide without altering the general alpha/beta scaffold of scorpion toxins.


Subject(s)
Disulfides , Scorpion Venoms/chemistry , Amino Acid Sequence , Animals , Brain/metabolism , Chromatography, High Pressure Liquid , Cysteine/chemistry , Dose-Response Relationship, Drug , Electrophysiology , Kinetics , Lethal Dose 50 , Ligands , Magnetic Resonance Spectroscopy , Mice , Mice, Inbred C57BL , Models, Molecular , Molecular Sequence Data , Mutation , Oocytes/metabolism , Peptide Biosynthesis , Point Mutation , Potassium Channels/chemistry , Protein Conformation , Protein Structure, Secondary , Rats , Scorpion Venoms/genetics , Sequence Homology, Amino Acid , Synaptosomes/metabolism , Time Factors , Xenopus
7.
Eur J Biochem ; 267(16): 5149-55, 2000 Aug.
Article in English | MEDLINE | ID: mdl-10931199

ABSTRACT

Pi1 is a 35-residue toxin cross-linked by four disulfide bridges that has been isolated from the venom of the chactidae scorpion Pandinus imperator. Due to its very low abundance in the venom, we have chemically synthesized this toxin in order to study its biological activity. Enzyme-based proteolytic cleavage of the synthetic Pi1 (sPi1) demonstrates half-cystine pairings between Cys4-Cys25, Cys10-Cys30, Cys14-Cys32 and Cys20-Cys35, which is in agreement with the disulfide bridge organization initially reported on the natural toxin. In vivo, intracerebroventricular injection of sPi1 in mice produces lethal effects with an LD50 of 0.2 microgram per mouse. In vitro, the application of sPi1 induces drastic inhibition of Shaker B (IC50 of 23 nM) and rat Kv1.2 channels (IC50 of 0.44 nM) heterologously expressed in Xenopus laevis oocytes. No effect was observed on rat Kv1.1 and Kv1.3 currents upon synthetic peptide application. Also, sPi1 is able to compete with 125I-labeled apamin for binding onto rat brain synaptosomes with an IC50 of 55 pM. Overall, these results demonstrate that sPi1 displays a large spectrum of activities by blocking both SK- and Kv1-types of K+ channels; a selectivity reminiscent of that of maurotoxin, another structurally related four disulfide-bridged scorpion toxin that exhibits a different half-cystine pairing pattern.


Subject(s)
Potassium Channel Blockers , Potassium Channels, Voltage-Gated , Scorpion Venoms/chemical synthesis , Scorpion Venoms/pharmacology , Amino Acid Sequence , Animals , Cerebral Ventricles/drug effects , Cerebral Ventricles/physiology , Cystine , Disulfides/analysis , Humans , Injections, Intraventricular , Kv1.1 Potassium Channel , Kv1.2 Potassium Channel , Kv1.3 Potassium Channel , Lethal Dose 50 , Mice , Molecular Sequence Data , Potassium Channels/physiology , Rats , Scorpion Venoms/chemistry , Sequence Alignment , Sequence Homology, Amino Acid , Xenopus laevis
8.
J Biol Chem ; 275(18): 13605-12, 2000 May 05.
Article in English | MEDLINE | ID: mdl-10788477

ABSTRACT

Maurotoxin (MTX) is a 34-residue toxin that has been isolated from the venom of the chactidae scorpion Scorpio maurus palmatus. The toxin displays an exceptionally wide range of pharmacological activity since it binds onto small conductance Ca(2+)-activated K(+) channels and also blocks Kv channels (Shaker, Kv1.2 and Kv1.3). MTX possesses 53-68% sequence identity with HsTx1 and Pi1, two other K(+) channel short chain scorpion toxins cross-linked by four disulfide bridges. These three toxins differ from other K(+)/Cl(-)/Na(+) channel scorpion toxins cross-linked by either three or four disulfide bridges by the presence of an extra half-cystine residue in the middle of a consensus sequence generally associated with the formation of an alpha/beta scaffold (an alpha-helix connected to an antiparallel beta-sheet by two disulfide bridges). Because MTX exhibits an uncommon disulfide bridge organization among known scorpion toxins (C1-C5, C2-C6, C3-C4, and C7-C8 instead of C1-C4, C2-C5, and C3-C6 for three-disulfide-bridged toxins or C1-C5, C2-C6, C3-C7, and C4-C8 for four-disulfide-bridged toxins), we designed and chemically synthesized an MTX analog with three instead of four disulfide bridges ([Abu(19),Abu(34)]MTX) and in which the entire consensus motif of scorpion toxins was restored by the substitution of the two half-cystines in positions 19 and 34 (corresponding to C4 and C8) by two isosteric alpha-aminobutyrate (Abu) derivatives. The three-dimensional structure of [Abu(19), Abu(34)]MTX in solution was solved by (1)H NMR. This analog adopts the alpha/beta scaffold with now conventional half-cystine pairings connecting C1-C5, C2-C6, and C3-C7 (with C4 and C8 replaced by Abu derivatives). This novel arrangement in half-cystine pairings that concerns the last disulfide bridge results mainly in a reorientation of the alpha-helix regarding the beta-sheet structure. In vivo, [Abu(19),Abu(34)]MTX remains lethal in mice as assessed by intracerebroventricular injection of the peptide (LD(50) value of 0. 25 microg/mouse). The structural variations are also accompanied by changes in the pharmacological selectivity of the peptide, suggesting that the organization pattern of disulfide bridges should affect the three-dimensional presentation of certain key residues critical to the blockage of K(+) channel subtypes.


Subject(s)
Drug Design , Scorpion Venoms/chemistry , Toxins, Biological/chemistry , Amino Acid Sequence , Animals , Disulfides , Magnetic Resonance Spectroscopy , Mice , Molecular Sequence Data , Protein Conformation , Scorpion Venoms/genetics , Scorpions , Toxins, Biological/chemical synthesis , Toxins, Biological/genetics
9.
FEBS Lett ; 469(2-3): 179-85, 2000 Mar 10.
Article in English | MEDLINE | ID: mdl-10713267

ABSTRACT

Maurocalcine is a novel toxin isolated from the venom of the chactid scorpion Scorpio maurus palmatus. It is a 33-mer basic peptide cross-linked by three disulfide bridges, which shares 82% sequence identity with imperatoxin A, a scorpion toxin from the venom of Pandinus imperator. Maurocalcine is peculiar in terms of structural properties since it does not possess any consensus motif reported so far in other scorpion toxins. Due to its low concentration in venom (0.5% of the proteins), maurocalcine was chemically synthesized by means of an optimized solid-phase method, and purified after folding/oxidation by using both C18 reversed-phase and ion exchange high-pressure liquid chromatographies. The synthetic product (sMCa) was characterized. The half-cystine pairing pattern of sMCa was identified by enzyme-based cleavage and Edman sequencing. The pairings were Cys3-Cys17, Cys10-Cys21, and Cys16-Cys32. In vivo, the sMCa was lethal to mice following intracerebroventricular inoculation (LD(50), 20 microg/mouse). In vitro, electrophysiological experiments based on recordings of single channels incorporated into planar lipid bilayers showed that sMCa potently and reversibly modifies channel gating behavior of the type 1 ryanodine receptor by inducing prominent subconductance behavior.


Subject(s)
Ryanodine Receptor Calcium Release Channel/chemistry , Scorpion Venoms/chemical synthesis , Amino Acid Sequence , Animals , Chromatography, High Pressure Liquid , Cystine/chemistry , Electrophysiology , Injections, Intraventricular , Ion Channel Gating , Lethal Dose 50 , Lipid Bilayers , Mice , Molecular Sequence Data , Scorpion Venoms/chemistry , Scorpion Venoms/toxicity , Sequence Analysis, Protein , Sequence Homology, Amino Acid
SELECTION OF CITATIONS
SEARCH DETAIL
...