Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 13 de 13
Filter
Add more filters










Publication year range
1.
J Biol Chem ; 300(5): 107214, 2024 May.
Article in English | MEDLINE | ID: mdl-38522521

ABSTRACT

The role of polyunsaturated fatty acid (PUFA) biosynthesis in acute myeloid leukemia (AML) remains largely undefined. A comparative expression analysis of 35 genes encoding fatty acid biosynthesis enzymes showed that fatty acid desaturase 1 (FADS1) was highly expressed across multiple AML subtypes relative to healthy controls and that elevated FADS1 expression correlates with worse overall AML patient survival. Functionally, shRNA-mediated inhibition of FADS1 reduced AML cell growth in vitro and significantly delayed leukemia onset in an AML mouse model. AML cell lines depleted of FADS1 arrested in the G1/S-phase of the cell cycle, acquired characteristics of myeloid maturation and subsequently died. To understand the molecular consequences of FADS1 inhibition, a combination of mass spectrometry-based analysis of complex lipids and gene expression analysis (RNA-seq) was performed. FADS1 inhibition caused AML cells to exhibit significant lipidomic remodeling, including depletion of PUFAs from the phospholipids, phosphatidylserine, and phosphatidylethanolamine. These lipidomic alterations were accompanied by an increase induction of inflammatory and stimulator of interferon genes (STING)-mediated type-1 interferon signaling. Remarkably, genetic deletion of STING largely prevented the AML cell maturation and death phenotypes mediated by FADS1 inhibition. Highlighting the therapeutic implications of these findings, pharmacological blockade of PUFA biosynthesis reduced patient-derived AML cell numbers ex vivo but not that of healthy donor cells. Similarly, STING agonism attenuated patient-derived-AML survival; however, STING activation also reduced healthy granulocyte numbers. Collectively, these data unveil a previously unrecognized importance of PUFA biosynthesis in leukemogenesis and that imbalances in PUFA metabolism can drive STING-mediated AML maturation and death.


Subject(s)
Delta-5 Fatty Acid Desaturase , Fatty Acid Desaturases , Fatty Acids, Unsaturated , Leukemia, Myeloid, Acute , Membrane Proteins , Leukemia, Myeloid, Acute/metabolism , Leukemia, Myeloid, Acute/pathology , Leukemia, Myeloid, Acute/genetics , Animals , Humans , Mice , Fatty Acids, Unsaturated/metabolism , Fatty Acids, Unsaturated/biosynthesis , Fatty Acid Desaturases/metabolism , Fatty Acid Desaturases/genetics , Membrane Proteins/metabolism , Membrane Proteins/genetics , Cell Line, Tumor , Cell Death , Signal Transduction
2.
Int J Mol Sci ; 23(24)2022 Dec 19.
Article in English | MEDLINE | ID: mdl-36555852

ABSTRACT

Bexarotene is an FDA-approved drug for the treatment of cutaneous T-cell lymphoma (CTCL); however, its use provokes or disrupts other retinoid-X-receptor (RXR)-dependent nuclear receptor pathways and thereby incites side effects including hypothyroidism and raised triglycerides. Two novel bexarotene analogs, as well as three unique CD3254 analogs and thirteen novel NEt-TMN analogs, were synthesized and characterized for their ability to induce RXR agonism in comparison to bexarotene (1). Several analogs in all three groups possessed an isochroman ring substitution for the bexarotene aliphatic group. Analogs were modeled for RXR binding affinity, and EC50 as well as IC50 values were established for all analogs in a KMT2A-MLLT3 leukemia cell line. All analogs were assessed for liver-X-receptor (LXR) activity in an LXRE system to gauge the potential for the compounds to provoke raised triglycerides by increasing LXR activity, as well as to drive LXRE-mediated transcription of brain ApoE expression as a marker for potential therapeutic use in neurodegenerative disorders. Preliminary results suggest these compounds display a broad spectrum of off-target activities. However, many of the novel compounds were observed to be more potent than 1. While some RXR agonists cross-signal the retinoic acid receptor (RAR), many of the rexinoids in this work displayed reduced RAR activity. The isochroman group did not appear to substantially reduce RXR activity on its own. The results of this study reveal that modifying potent, selective rexinoids like bexarotene, CD3254, and NEt-TMN can provide rexinoids with increased RXR selectivity, decreased potential for cross-signaling, and improved anti-proliferative characteristics in leukemia models compared to 1.


Subject(s)
Leukemia , Lymphoma, T-Cell, Cutaneous , Skin Neoplasms , Humans , Bexarotene/pharmacology , Retinoid X Receptors/metabolism , Tetrahydronaphthalenes/pharmacology , Liver X Receptors , Retinoids/pharmacology , Triglycerides
3.
Haematologica ; 107(2): 417-426, 2022 02 01.
Article in English | MEDLINE | ID: mdl-34134472

ABSTRACT

RARA and RXRA contribute to myeloid maturation in both mice and humans, and deletion of Rxra and Rxrb augments leukemic growth in mice. While defining the domains of RXRA that are required for anti-leukemic effects in murine KMT2A-MLLT3 leukemia cells, we unexpectedly identified RXRA DT448/9PP as a constitutively active variant capable of inducing maturation and loss of their proliferative phenotype. RXRA DT448/9PP was associated with ligand-independent activity in reporter assays, with enhanced co-activator interactions, reduced engraftment in vivo, and activation of myeloid maturation transcriptional signatures that overlapped with those of cells treated with the potent RXRA agonist bexarotene, suggestive of constitutive activity that leads to leukemic maturation. Phenotypes of RXRA DT448/9PP appear to differ from those of two other RXRA mutations with forms of constitutive activity (F318A and S427F), in that DT448/9PP activity was resistant to mutations at critical ligand-interacting amino acids (R316A/L326A) and was resistant to pharmacological antagonists, suggesting it may be ligand-independent. These data provide further evidence that activated retinoid X receptors can regulate myeloid maturation and provide a novel constitutively active variant that may be germane for broader studies of retinoid X receptors in other settings.


Subject(s)
Leukemia, Myeloid, Acute , Leukemia, Promyelocytic, Acute , Retinoid X Receptor alpha , Animals , DNA-Binding Proteins , Humans , Leukemia, Myeloid, Acute/genetics , Leukemia, Promyelocytic, Acute/drug therapy , Mice , Retinoid X Receptor alpha/genetics , Retinoid X Receptor alpha/metabolism
4.
Int J Mol Sci ; 22(22)2021 Nov 16.
Article in English | MEDLINE | ID: mdl-34830251

ABSTRACT

Five novel analogs of 6-(ethyl)(4-isobutoxy-3-isopropylphenyl)amino)nicotinic acid-or NEt-4IB-in addition to seven novel analogs of 4-[1-(3,5,5,8,8-pentamethyl-5,6,7,8-tetrahydro-2-naphthyl)ethynyl]benzoic acid (bexarotene) were prepared and evaluated for selective retinoid-X-receptor (RXR) agonism alongside bexarotene (1), a FDA-approved drug for cutaneous T-cell lymphoma (CTCL). Bexarotene treatment elicits side-effects by provoking or disrupting other RXR-dependent pathways. Analogs were assessed by the modeling of binding to RXR and then evaluated in a human cell-based RXR-RXR mammalian-2-hybrid (M2H) system as well as a RXRE-controlled transcriptional system. The analogs were also tested in KMT2A-MLLT3 leukemia cells and the EC50 and IC50 values were determined for these compounds. Moreover, the analogs were assessed for activation of LXR in an LXRE system as drivers of ApoE expression and subsequent use as potential therapeutics in neurodegenerative disorders, and the results revealed that these compounds exerted a range of differential LXR-RXR activation and selectivity. Furthermore, several of the novel analogs in this study exhibited reduced RARE cross-signaling, implying RXR selectivity. These results demonstrate that modification of partial agonists such as NEt-4IB and potent rexinoids such as bexarotene can lead to compounds with improved RXR selectivity, decreased cross-signaling of other RXR-dependent nuclear receptors, increased LXRE-heterodimer selectivity, and enhanced anti-proliferative potential in leukemia cell lines compared to therapeutics such as 1.


Subject(s)
Antineoplastic Agents/pharmacology , Apolipoproteins E/genetics , Bexarotene/pharmacology , Leukocytes/drug effects , Nicotinic Acids/pharmacology , Retinoid X Receptor alpha/agonists , Animals , Antineoplastic Agents/chemical synthesis , Apolipoproteins E/metabolism , Bexarotene/analogs & derivatives , Bexarotene/chemical synthesis , Cell Line, Tumor , Dose-Response Relationship, Drug , Gene Expression , Humans , Leukocytes/metabolism , Leukocytes/pathology , Nicotinic Acids/chemical synthesis , Retinoid X Receptor alpha/genetics , Retinoid X Receptor alpha/metabolism , Structure-Activity Relationship
5.
J Biol Chem ; 297(5): 101240, 2021 11.
Article in English | MEDLINE | ID: mdl-34571009

ABSTRACT

The orphan nuclear receptor Nur77 is an immediate-early response gene that based on tissue and cell context is implicated in a plethora of cellular processes, including proliferation, differentiation, apoptosis, metabolism, and inflammation. Nur77 has a ligand-binding pocket that is obstructed by hydrophobic side groups. Naturally occurring, cell-endogenous ligands have not been identified, and Nur77 transcriptional activity is thought to be regulated through posttranslational modification and modulation of protein levels. To determine whether Nur77 is transcriptionally active in hematopoietic cells in vivo, we used an upstream activating sequence (UAS)-GFP transgenic reporter. We found that Nur77 is transcriptionally inactive in vivo in hematopoietic cells under basal conditions, but that activation occurs following cytokine exposure by G-CSF or IL-3. We also identified a series of serine residues required for cytokine-dependent transactivation of Nur77. Moreover, a kinase inhibitor library screen and proximity labeling-based mass spectrometry identified overlapping kinase pathways that physically interacted with Nur77 and whose inhibition abrogated cytokine-induced activation of Nur77. We determined that transcriptional activation of Nur77 by G-CSF or IL-3 requires functional JAK and mTor signaling since their inhibition leads to Nur77 transcriptional inactivation. Thus, intracellular cytokine signaling networks appear to regulate Nur77 transcriptional activity in mouse hematopoietic cells.


Subject(s)
Granulocyte Colony-Stimulating Factor/pharmacology , Hematopoietic Stem Cells/metabolism , Interleukin-3/pharmacology , Nuclear Receptor Subfamily 4, Group A, Member 1/metabolism , Signal Transduction/drug effects , Transcriptional Activation/drug effects , Animals , Cell Line , Humans , Janus Kinases/genetics , Janus Kinases/metabolism , Mice , Nuclear Receptor Subfamily 4, Group A, Member 1/genetics , TOR Serine-Threonine Kinases/genetics , TOR Serine-Threonine Kinases/metabolism , Transcriptional Activation/genetics
6.
Haematologica ; 106(4): 1008-1021, 2021 04 01.
Article in English | MEDLINE | ID: mdl-33241677

ABSTRACT

Retinoid therapy transformed response and survival outcomes in acute promyelocytic leukemia (APL), but has demonstrated only modest activity in non-APL forms of acute myeloid leukemia (AML). The presence of natural retinoids in vivo could influence the efficacy of pharmacologic agonists and antagonists. We found that natural RXRA ligands, but not RARA ligands, were present in murine MLL-AF9-derived myelomonocytic leukemias in vivo and that the concurrent presence of receptors and ligands acted as tumor suppressors. Pharmacologic retinoid responses could be optimized by concurrent targeting RXR ligands (e.g. bexarotene) and RARA ligands (e.g. all-trans retinoic acid, ATRA), which induced either leukemic maturation or apoptosis depending on cell culture conditions. Co-repressor release from the RARA:RXRA heterodimer occurred with RARA activation, but not RXRA activation, providing an explanation for the combination synergy. Combination synergy could be replicated in additional, but not all, AML cell lines and primary samples, and was associated with improved survival in vivo, although tolerability of bexarotene administration in mice remained an issue. These data provide insight into the basal presence of natural retinoids in leukemias in vivo and a potential strategy for clinical retinoid combination regimens in leukemias beyond acute promyelocytic leukemia.


Subject(s)
Leukemia, Promyelocytic, Acute , Retinoids , Animals , Cell Differentiation , Mice , Receptors, Retinoic Acid/genetics , Tretinoin/pharmacology
7.
Pharmaceuticals (Basel) ; 12(2)2019 May 15.
Article in English | MEDLINE | ID: mdl-31096606

ABSTRACT

Up until the first half of the 20th century, silver found significant employment in medical applications, particularly in the healing of open wounds, thanks to its antibacterial and antifungal properties. Wound repair is a complex and dynamic biological process regulated by several pathways that cooperate to restore tissue integrity and homeostasis. To facilitate healing, injuries need to be promptly treated. Recently, the interest in alternatives to antibiotics has been raised given the widespread phenomenon of antibiotic resistance. Among these alternatives, the use of silver appears to be a valid option, so a resurgence in its use has been recently observed. In particular, in contrast to ionic silver, colloidal silver, a suspension of metallic silver particles, shows antibacterial activity displaying less or no toxicity. However, the human health risks associated with exposure to silver nanoparticles (NP) appear to be conflicted, and some studies have suggested that it could be toxic in different cellular contexts. These potentially harmful effects of silver NP depend on various parameters including NP size, which commonly range from 1 to 100 nm. In this study, we analyzed the effect of a colloidal silver preparation composed of very small and homogeneous nanoparticles of 0.62 nm size, smaller than those previously tested. We found no adverse effect on the cell proliferation of HaCaT cells, even at high NP concentration. Time-lapse microscopy and indirect immunofluorescence experiments demonstrated that this preparation of colloidal silver strongly increased cell migration, re-modeled the cytoskeleton, and caused recruitment of E-cadherin at cell-cell junctions of human cultured keratinocytes.

8.
Exp Hematol ; 70: 70-84.e6, 2019 02.
Article in English | MEDLINE | ID: mdl-30553776

ABSTRACT

SMC3 encodes a subunit of the cohesin complex that has canonical roles in regulating sister chromatids segregation during mitosis and meiosis. Recurrent heterozygous mutations in SMC3 have been reported in acute myeloid leukemia (AML) and other myeloid malignancies. In this study, we investigated whether the missense mutations in SMC3 might have dominant-negative effects or phenocopy loss-of-function effects by comparing the consequences of Smc3-deficient and -haploinsufficient mouse models. We found that homozygous deletion of Smc3 during embryogenesis or in adult mice led to hematopoietic failure, suggesting that SMC3 missense mutations are unlikely to be associated with simple dominant-negative phenotypes. In contrast, haploinsufficiency was tolerated during embryonic and adult hematopoiesis. Under steady-state conditions, Smc3 haploinsufficiency did not alter colony forming in methylcellulose, only modestly decreased mature myeloid cell populations, and led to limited expression changes and chromatin alteration in Lin-cKit+ bone marrow cells. However, following transplantation, engraftment, and subsequent deletion, we observed a hematopoietic competitive disadvantage across myeloid and lymphoid lineages and within the stem/progenitor compartments. This disadvantage was not affected by hematopoietic stresses, but was partially abrogated by concurrent Dnmt3a haploinsufficiency, suggesting that antecedent mutations may be required to optimize the leukemogenic potential of Smc3 mutations.


Subject(s)
Cell Cycle Proteins , Chondroitin Sulfate Proteoglycans , Chromosomal Proteins, Non-Histone , Embryo, Mammalian/metabolism , Haploinsufficiency , Hematopoiesis/genetics , Mutation, Missense , Animals , Cell Cycle Proteins/genetics , Cell Cycle Proteins/metabolism , Chondroitin Sulfate Proteoglycans/genetics , Chondroitin Sulfate Proteoglycans/metabolism , Chromosomal Proteins, Non-Histone/genetics , Chromosomal Proteins, Non-Histone/metabolism , Embryo, Mammalian/cytology , Mice , Mice, Transgenic
9.
Sci Signal ; 10(503)2017 Oct 31.
Article in English | MEDLINE | ID: mdl-29089448

ABSTRACT

The retinoid X receptor α (RXRA) has been implicated in diverse hematological processes. To identify natural ligands of RXRA that are present in hematopoietic cells, we adapted an upstream activation sequence-green fluorescent protein (UAS-GFP) reporter mouse to detect natural RXRA ligands in vivo. We observed reporter activity in diverse types of hematopoietic cells in vivo. Reporter activity increased during granulocyte colony-stimulating factor (G-CSF)-induced granulopoiesis and after phenylhydrazine (PHZ)-induced anemia, suggesting the presence of dynamically regulated natural RXRA ligands in hematopoietic cells. Mouse plasma activated Gal4-UAS reporter cells in vitro, and plasma from mice treated with G-CSF or PHZ recapitulated the patterns of reporter activation that we observed in vivo. Plasma from mice with dietary vitamin A deficiency only mildly reduced RXRA reporter activity, whereas plasma from mice on a fatty acid restriction diet reduced reporter activity, implicating fatty acids as plasma RXRA ligands. Through differential extraction coupled with mass spectrometry, we identified the long-chain fatty acid C24:5 as a natural RXRA ligand that was greatly increased in abundance in response to hematopoietic stress. Together, these data suggest that natural RXRA ligands are present and dynamically increased in abundance in mouse hematopoietic cells in vivo.


Subject(s)
Hematopoietic Stem Cells/metabolism , Retinoid X Receptor alpha/metabolism , Animals , Fatty Acids/blood , Granulocyte Colony-Stimulating Factor/pharmacology , Granulocytes/drug effects , Green Fluorescent Proteins/genetics , Green Fluorescent Proteins/metabolism , HEK293 Cells , Humans , Leukopoiesis/drug effects , Ligands , Mice , Mice, Knockout , Mice, Mutant Strains , Myeloid Cells/metabolism , Retinoid X Receptor alpha/genetics , Vitamin A/blood
10.
Oncotarget ; 8(4): 6193-6205, 2017 Jan 24.
Article in English | MEDLINE | ID: mdl-28008157

ABSTRACT

Correct spatial and temporal control of cell proliferation is of fundamental importance for tissue homeostasis. Its deregulation has been associated with several pathological conditions. In common with almost every aspect of plant and animal biology, cell proliferation is dominated by day-night rhythms generated by the circadian clock. However, our understanding of the crosstalk between the core clock and cell cycle control mechanisms remains incomplete. In this study, using zebrafish as a vertebrate model system, we show that the nuclear localization of the Y-box binding protein 1 (YB-1), a regulator of cyclin expression and a hallmark of certain cancers, is robustly regulated by the circadian clock. We implicate clock-controlled changes in YB-1 SUMOylation as one of the mechanisms regulating its periodic nuclear entry at the beginning of the light phase. Furthermore, we demonstrate that YB-1 nuclear protein is able to downregulate cyclin A2 mRNA expression in zebrafish via its direct interaction with the cyclin A2 promoter. Thus, by acting as a direct target of cyclic posttranslational regulatory mechanisms, YB-1 serves as one bridge between the circadian clock and its cell cycle control.


Subject(s)
Cell Cycle , Cell Proliferation , Circadian Rhythm , DNA-Binding Proteins/metabolism , Y-Box-Binding Protein 1/metabolism , Zebrafish/metabolism , Animals , Binding Sites , Cyclin A2/genetics , Cyclin A2/metabolism , DNA-Binding Proteins/genetics , Female , Gene Expression Regulation , HEK293 Cells , Humans , Male , Promoter Regions, Genetic , RNA Interference , Signal Transduction , Sumoylation , Time Factors , Transfection , Y-Box-Binding Protein 1/genetics , Zebrafish/genetics , Zebrafish Proteins
11.
Genes Cells ; 21(6): 648-60, 2016 Jun.
Article in English | MEDLINE | ID: mdl-27168020

ABSTRACT

Y-box binding protein 1 (YBX-1 or YB-1) is an oncoprotein that promotes replicative immortality, tumor cell invasion and metastasis. The increase in the abundance of YB-1 in the cell or YB-1 translocation from the cytoplasm to the nucleus is characteristic of malignant cell growth. We have previously reported that ΔNp63α, a transcription factor that is known to play a pivotal role in keratinocyte proliferation and differentiation, promotes YB-1 nuclear accumulation. Here, we show that YB-1 is highly expressed in proliferating keratinocytes and is down-regulated during keratinocyte differentiation. ΔNp63α reduces YB-1 protein turnover and leads to accumulation of ubiquitin-conjugated YB-1 into the nucleus. Reduction of YB-1 protein level, following treatment with a DNA-damaging agent, is inhibited by ΔNp63α suggesting that YB-1 and ΔNp63α interplay can support keratinocyte proliferation and protect cells from apoptosis under genotoxic stress.


Subject(s)
Keratinocytes/cytology , Transcription Factors/metabolism , Tumor Suppressor Proteins/metabolism , Y-Box-Binding Protein 1/chemistry , Cell Cycle , Cell Differentiation , Cell Line, Tumor , Down-Regulation , Humans , Keratinocytes/metabolism , Protein Stability , Y-Box-Binding Protein 1/metabolism
12.
J Cell Physiol ; 230(9): 2067-74, 2015 Sep.
Article in English | MEDLINE | ID: mdl-25639555

ABSTRACT

Cutaneous squamous cell carcinomas (SCCs) typically lack somatic oncogene-activating mutations and most of them contain p53 mutations. However, the presence of p53 mutations in skin premalignant lesions suggests that these represent early events during tumor progression and additional alterations may be required for SCC development. SCC cells frequently express high levels of ΔNp63α and Y-box binding 1 (YB-1 or YBX1) oncoproteins. Here, we show that knockdown of YB-1 in spontaneously immortalized HaCaT and non-metastatic SCC011 cells led to a dramatic decrease of ΔNp63α, cell detachment and death. In highly metastatic SCC022 cells, instead, YB-1 silencing induces PI3K/AKT signaling hyperactivation which counteracts the effect of YB-1 depletion and promotes cell survival. In summary, our results unveil a functional cross-talk between YB-1, ΔNp63α and the PI3K/AKT pathway critically governing survival of squamous carcinoma cells.


Subject(s)
Carcinoma, Squamous Cell/genetics , Oncogene Protein v-akt/genetics , Phosphatidylinositol 3-Kinases/genetics , Skin Neoplasms/genetics , Transcription Factors/genetics , Tumor Suppressor Proteins/genetics , Y-Box-Binding Protein 1/genetics , Carcinoma, Squamous Cell/pathology , Cell Line, Tumor , Cell Proliferation/genetics , Cell Survival/genetics , Gene Expression Regulation, Neoplastic , Gene Knockdown Techniques , Humans , Oncogene Protein v-akt/metabolism , Phosphatidylinositol 3-Kinases/metabolism , Signal Transduction/genetics , Skin Neoplasms/pathology , Tumor Suppressor Protein p53/genetics , Y-Box-Binding Protein 1/biosynthesis
13.
J Biol Chem ; 287(36): 30170-80, 2012 Aug 31.
Article in English | MEDLINE | ID: mdl-22787154

ABSTRACT

The Y-box binding protein 1 (YB-1) belongs to the cold-shock domain protein superfamily, one of the most evolutionarily conserved nucleic acid-binding proteins currently known. YB-1 performs a wide variety of cellular functions, including transcriptional and translational regulation, DNA repair, drug resistance, and stress responses to extracellular signals. Inasmuch as the level of YB-1 drastically increases in tumor cells, this protein is considered to be one of the most indicative markers of malignant tumors. Here, we present evidence that ΔNp63α, the predominant p63 protein isoform in squamous epithelia and YB-1, can physically interact. Into the nucleus, ΔNp63α and YB-1 cooperate in PI3KCA gene promoter activation. Moreover, ΔNp63α promotes YB-1 nuclear accumulation thereby reducing the amount of YB-1 bound to its target transcripts such as that encoding the SNAIL1 protein. Accordingly, ΔNp63α enforced expression was associated with a reduction of the level of SNAIL1, a potent inducer of epithelial to mesenchymal transition. Furthermore, ΔNp63α depletion causes morphological change and enhanced formation of actin stress fibers in squamous cancer cells. Mechanistic studies indicate that ΔNp63α affects cell movement and can reverse the increase of cell motility induced by YB-1 overexpression. These data thus suggest that ΔNp63α provides inhibitory signals for cell motility. Deficiency of ΔNp63α gene expression promotes cell mobilization, at least partially, through a YB-1-dependent mechanism.


Subject(s)
Cell Movement , Cell Nucleus/metabolism , Transcription Factors/metabolism , Tumor Suppressor Proteins/metabolism , Y-Box-Binding Protein 1/metabolism , Active Transport, Cell Nucleus/genetics , Cell Line, Tumor , Cell Nucleus/genetics , Cell Survival/genetics , Humans , Protein Isoforms , Transcription Factors/genetics , Tumor Suppressor Proteins/genetics , Y-Box-Binding Protein 1/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...