Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 12 de 12
Filter
Add more filters










Publication year range
1.
J Cell Biol ; 223(1)2024 01 01.
Article in English | MEDLINE | ID: mdl-37955925

ABSTRACT

The cell cortex of syncytial Drosophila embryos is patterned into cap and intercap regions by centrosomes, specific sets of proteins that are restricted to their respective regions by unknown mechanisms. Here, we found that Kinesin-1 is required for the restriction of plus- and minus-ends of centrosomal and non-centrosomal microtubules to the cap region, marked by EB1 and Patronin/Shot, respectively. Kinesin-1 also directly or indirectly restricts proteins and Rho signaling to the intercap, including the RhoGEF Pebble, Dia, Myosin II, Capping protein-α, and the polarity protein Par-1. Furthermore, we found that Par-1 is required for cap restriction of Patronin/Shot, and vice versa Patronin, for Par-1 enrichment at the intercap. In summary, our data support a model that Kinesin-1 would mediate the restriction of centrosomal and non-centrosomal microtubules to a region close to the centrosomes and exclude Rho signaling and Par-1. In addition, mutual antagonistic interactions would refine and maintain the boundary between cap and intercap and thus generate a distinct cortical pattern.


Subject(s)
Drosophila Proteins , Drosophila , Glycogen Synthase Kinase 3 , Kinesins , Membrane Proteins , Animals , Centrosome , Cytoskeletal Proteins , Drosophila/embryology , Drosophila/genetics , Drosophila Proteins/genetics , Glycogen Synthase Kinase 3/genetics , Kinesins/genetics , Microtubule-Associated Proteins/genetics , Signal Transduction , Membrane Proteins/genetics
2.
Curr Biol ; 33(22): 4807-4826.e6, 2023 11 20.
Article in English | MEDLINE | ID: mdl-37827152

ABSTRACT

Geometry is a fundamental attribute of biological systems, and it underlies cell and tissue dynamics. Cell geometry controls cell-cycle progression and mitosis and thus modulates tissue development and homeostasis. In sharp contrast and despite the extensive characterization of the genetic mechanisms of caspase activation, we know little about whether and how cell geometry controls apoptosis commitment in developing tissues. Here, we combined multiscale time-lapse microscopy of developing Drosophila epithelium, quantitative characterization of cell behaviors, and genetic and mechanical perturbations to determine how apoptosis is controlled during epithelial tissue development. We found that early in cell lives and well before extrusion, apoptosis commitment is linked to two distinct geometric features: a small apical area compared with other cells within the tissue and a small relative apical area with respect to the immediate neighboring cells. We showed that these global and local geometric characteristics are sufficient to recapitulate the tissue-scale apoptotic pattern. Furthermore, we established that the coupling between these two geometric features and apoptotic cells is dependent on the Hippo/YAP and Notch pathways. Overall, by exploring the links between cell geometry and apoptosis commitment, our work provides important insights into the spatial regulation of cell death in tissues and improves our understanding of the mechanisms that control cell number and tissue size.


Subject(s)
Apoptosis , Drosophila , Animals , Epithelium/physiology , Drosophila/genetics , Apoptosis/physiology , Cell Death , Mitosis , Epithelial Cells
3.
Curr Biol ; 33(5): 858-874.e7, 2023 03 13.
Article in English | MEDLINE | ID: mdl-36917931

ABSTRACT

Cell proliferation is central to epithelial tissue development, repair, and homeostasis. During cell division, small RhoGTPases control both actomyosin dynamics and cell-cell junction remodeling to faithfully segregate the genome while maintaining tissue polarity and integrity. To decipher the mechanisms of RhoGTPase spatiotemporal regulation during epithelial cell division, we generated a transgenic fluorescently tagged library for the 48 Drosophila Rho guanine exchange factors (RhoGEFs) and GTPase-activating proteins (GAPs), and we systematically characterized their endogenous distributions by time-lapse microscopy. Therefore, we unveiled candidate regulators of the interplay between actomyosin and junctional dynamics during epithelial cell division. Building on these findings, we established that the conserved RhoGEF Cysts and RhoGEF4 play sequential and distinct roles to couple cytokinesis with de novo junction formation. During ring contraction, Cysts via Rho1 participates in the neighbor mechanosensing response, promoting daughter-daughter cell membrane juxtaposition in preparation to de novo junction formation. Subsequently and upon midbody formation, RhoGEF4 via Rac acts in the dividing cell to ensure the withdrawal of the neighboring cell membranes, thus controlling de novo junction length and cell-cell arrangements upon cytokinesis. Altogether, our findings delineate how the RhoGTPases Rho and Rac are locally and temporally activated during epithelial cytokinesis, highlighting the RhoGEF/GAP library as a key resource to understand the broad range of biological processes regulated by RhoGTPases.


Subject(s)
Actomyosin , Epithelial Cells , Animals , Rho Guanine Nucleotide Exchange Factors/genetics , Rho Guanine Nucleotide Exchange Factors/metabolism , Actomyosin/metabolism , Cell Division , Cytokinesis , Drosophila
4.
Dev Cell ; 56(24): 3393-3404.e7, 2021 12 20.
Article in English | MEDLINE | ID: mdl-34879263

ABSTRACT

Deciphering gene function requires the ability to control gene expression in space and time. Binary systems such as the Gal4/UAS provide a powerful means to modulate gene expression and to induce loss or gain of function. This is best exemplified in Drosophila, where the Gal4/UAS system has been critical to discover conserved mechanisms in development, physiology, neurobiology, and metabolism, to cite a few. Here we describe a transgenic light-inducible Gal4/UAS system (ShineGal4/UAS) based on Magnet photoswitches. We show that it allows efficient, rapid, and robust activation of UAS-driven transgenes in different tissues and at various developmental stages in Drosophila. Furthermore, we illustrate how ShineGal4 enables the generation of gain and loss-of-function phenotypes at animal, organ, and cellular levels. Thanks to the large repertoire of UAS-driven transgenes, ShineGal4 enriches the Drosophila genetic toolkit by allowing in vivo control of gene expression with high temporal and spatial resolutions.


Subject(s)
Drosophila melanogaster/genetics , Gene Expression Regulation, Developmental , Optogenetics , Animals , Body Patterning/genetics , Body Patterning/radiation effects , Drosophila melanogaster/radiation effects , Gene Expression Regulation, Developmental/radiation effects , Light , Organ Specificity/genetics , Organ Specificity/radiation effects , Pupa/genetics , Pupa/radiation effects , Time Factors
5.
Science ; 370(6514)2020 10 16.
Article in English | MEDLINE | ID: mdl-33060329

ABSTRACT

Biological systems tailor their properties and behavior to their size throughout development and in numerous aspects of physiology. However, such size scaling remains poorly understood as it applies to cell mechanics and mechanosensing. By examining how the Drosophila pupal dorsal thorax epithelium responds to morphogenetic forces, we found that the number of apical stress fibers (aSFs) anchored to adherens junctions scales with cell apical area to limit larger cell elongation under mechanical stress. aSFs cluster Hippo pathway components, thereby scaling Hippo signaling and proliferation with area. This scaling is promoted by tricellular junctions mediating an increase in aSF nucleation rate and lifetime in larger cells. Development, homeostasis, and repair entail epithelial cell size changes driven by mechanical forces; our work highlights how, in turn, mechanosensitivity scales with cell size.


Subject(s)
Epithelium/physiology , Mechanotransduction, Cellular , Stress Fibers/physiology , Stress, Mechanical , Animals , Cadherins/metabolism , Cell Size , Drosophila Proteins/metabolism , Drosophila melanogaster , Epithelial Cells/physiology , Intracellular Signaling Peptides and Proteins/metabolism , Myosin Type II/metabolism , Nuclear Proteins/metabolism , Protein Serine-Threonine Kinases/metabolism , Trans-Activators/metabolism , YAP-Signaling Proteins
6.
Curr Opin Cell Biol ; 62: 9-16, 2020 02.
Article in English | MEDLINE | ID: mdl-31509787

ABSTRACT

Mitotic spindle orientation has been linked to asymmetric cell divisions, tissue morphogenesis and homeostasis. The canonical pathway to orient the mitotic spindle is composed of the cortical recruitment factor NuMA and the molecular motor dynein, which exerts pulling forces on astral microtubules to orient the spindle. Recent work has defined a novel role for NuMA as a direct contributor to force generation. In addition, the exploration of geometrical and physical cues combined with the study of classical polarity pathways has led to deeper insights into the upstream regulation of spindle orientation. Here, we focus on how cell shape, junctions and mechanical tension act to orient spindle pulling forces in epithelia, and discuss different roles for spindle orientation in epithelia.


Subject(s)
Anisotropy , Cell Division/physiology , Epithelium/metabolism , Animals
7.
Dev Cell ; 45(5): 539-541, 2018 06 04.
Article in English | MEDLINE | ID: mdl-29870713

ABSTRACT

Two types of cortical actin networks act during mitotic pseudocleavage furrowing in the Drosophila syncytium, but how they interact has remained elusive. In this issue of Developmental Cell, Zhang et al. (2018) show how these networks shape each other and propose that furrowing is driven by actin polymerization-derived pushing forces.


Subject(s)
Actins , Drosophila , Animals , Cell Membrane , Drosophila Proteins
8.
Curr Biol ; 27(16): 2452-2464.e8, 2017 Aug 21.
Article in English | MEDLINE | ID: mdl-28803871

ABSTRACT

Oriented cell divisions are controlled by a conserved molecular cascade involving Gαi, LGN, and NuMA. We developed a new cellular model of oriented cell divisions combining micropatterning and localized recruitment of Gαi and performed an RNAi screen for regulators acting downstream of Gαi. Remarkably, this screen revealed a unique subset of dynein regulators as being essential for spindle orientation, shedding light on a core regulatory aspect of oriented divisions. We further analyze the involvement of one novel regulator, the actin-capping protein CAPZB. Mechanistically, we show that CAPZB controls spindle orientation independently of its classical role in the actin cytoskeleton by regulating the assembly, stability, and motor activity of the dynein/dynactin complex at the cell cortex, as well as the dynamics of mitotic microtubules. Finally, we show that CAPZB controls planar divisions in vivo in the developing neuroepithelium. This demonstrates the power of this in cellulo model of oriented cell divisions to uncover new genes required in spindle orientation in vertebrates.


Subject(s)
CapZ Actin Capping Protein/genetics , RNA Interference , Spindle Apparatus/metabolism , CapZ Actin Capping Protein/metabolism , Cell Division , HeLa Cells , Humans
9.
EMBO Rep ; 17(8): 1106-30, 2016 08.
Article in English | MEDLINE | ID: mdl-27432284

ABSTRACT

Mitotic spindle orientation is essential for cell fate decisions, epithelial maintenance, and tissue morphogenesis. In most animal cell types, the dynein motor complex is anchored at the cell cortex and exerts pulling forces on astral microtubules to position the spindle. Early studies identified the evolutionarily conserved Gαi/LGN/NuMA complex as a key regulator that polarizes cortical force generators. In recent years, a combination of genetics, biochemistry, modeling, and live imaging has contributed to decipher the mechanisms of spindle orientation. Here, we highlight the dynamic nature of the assembly of this complex and discuss the molecular regulation of its localization. Remarkably, a number of LGN-independent mechanisms were described recently, whereas NuMA remains central in most pathways involved in recruiting force generators at the cell cortex. We also describe the emerging role of the actin cortex in spindle orientation and discuss how dynamic astral microtubule formation is involved. We further give an overview on instructive external signals that control spindle orientation in tissues. Finally, we discuss the influence of cell geometry and mechanical forces on spindle orientation.


Subject(s)
Mitosis , Spindle Apparatus/metabolism , Actins/metabolism , Animals , Biomechanical Phenomena , Cell Cycle , Dyneins/metabolism , Gene Expression Regulation , Humans , Microtubules/metabolism , Multiprotein Complexes/metabolism , Nuclear Matrix-Associated Proteins/metabolism , Protein Binding , Protein Stability , Protein Transport , Signal Transduction
10.
BMC Bioinformatics ; 17(1): 183, 2016 Apr 26.
Article in English | MEDLINE | ID: mdl-27112769

ABSTRACT

BACKGROUND: Cell culture on printed micropatterns slides combined with automated fluorescent microscopy allows for extraction of tens of thousands of videos of small isolated growing cell clusters. The analysis of such large dataset in space and time is of great interest to the community in order to identify factors involved in cell growth, cell division or tissue formation by testing multiples conditions. However, cells growing on a micropattern tend to be tightly packed and to overlap with each other. Consequently, image analysis of those large dynamic datasets with no possible human intervention has proven impossible using state of the art automated cell detection methods. RESULTS: Here, we propose a fully automated image analysis approach to estimate the number, the location and the shape of each cell nucleus, in clusters at high throughput. The method is based on a robust fit of Gaussian mixture models with two and three components on each frame followed by an analysis over time of the fitting residual and two other relevant features. We use it to identify with high precision the very first frame containing three cells. This allows in our case to measure a cell division angle on each video and to construct division angle distributions for each tested condition. We demonstrate the accuracy of our method by validating it against manual annotation on about 4000 videos of cell clusters. CONCLUSIONS: The proposed approach enables the high throughput analysis of video sequences of isolated cell clusters obtained using micropatterns. It relies only on two parameters that can be set robustly as they reduce to the average cell size and intensity.


Subject(s)
Cell Nucleus , Image Processing, Computer-Assisted/methods , Microscopy, Video , Mitosis , Cell Nucleus/ultrastructure , HeLa Cells , Humans , Microscopy, Fluorescence , Models, Statistical , Normal Distribution , Time-Lapse Imaging
11.
Biophys J ; 109(9): 1785-97, 2015 Nov 03.
Article in English | MEDLINE | ID: mdl-26536256

ABSTRACT

Recently developed optogenetic methods promise to revolutionize cell biology by allowing signaling perturbations to be controlled in space and time with light. However, a quantitative analysis of the relationship between a custom-defined illumination pattern and the resulting signaling perturbation is lacking. Here, we characterize the biophysical processes governing the localized recruitment of the Cryptochrome CRY2 to its membrane-anchored CIBN partner. We develop a quantitative framework and present simple procedures that enable predictive manipulation of protein distributions on the plasma membrane with a spatial resolution of 5 µm. We show that protein gradients of desired levels can be established in a few tens of seconds and then steadily maintained. These protein gradients can be entirely relocalized in a few minutes. We apply our approach to the control of the Cdc42 Rho GTPase activity. By inducing strong localized signaling perturbation, we are able to monitor the initiation of cell polarity and migration with a remarkable reproducibility despite cell-to-cell variability.


Subject(s)
Cell Membrane/metabolism , Cryptochromes/metabolism , Optogenetics/methods , cdc42 GTP-Binding Protein/metabolism , Animals , Diffusion , Fluorescence Recovery After Photobleaching , Green Fluorescent Proteins/genetics , Green Fluorescent Proteins/metabolism , HeLa Cells , Humans , Light , Luminescent Proteins/genetics , Luminescent Proteins/metabolism , Mice , NIH 3T3 Cells , cdc42 GTP-Binding Protein/genetics , Red Fluorescent Protein
12.
J Cell Biol ; 206(6): 707-17, 2014 Sep 15.
Article in English | MEDLINE | ID: mdl-25202028

ABSTRACT

Oriented cell divisions are necessary for the development of epithelial structures. Mitotic spindle orientation requires the precise localization of force generators at the cell cortex via the evolutionarily conserved LGN complex. However, polarity cues acting upstream of this complex in vivo in the vertebrate epithelia remain unknown. In this paper, we show that Dlg1 is localized at the basolateral cell cortex during mitosis and is necessary for planar spindle orientation in the chick neuroepithelium. Live imaging revealed that Dlg1 is required for directed spindle movements during metaphase. Mechanistically, we show that direct interaction between Dlg1 and LGN promotes cortical localization of the LGN complex. Furthermore, in human cells dividing on adhesive micropatterns, homogenously localized Dlg1 recruited LGN to the mitotic cortex and was also necessary for proper spindle orientation. We propose that Dlg1 acts primarily to recruit LGN to the cortex and that Dlg1 localization may additionally provide instructive cues for spindle orientation.


Subject(s)
Adaptor Proteins, Signal Transducing/genetics , Cell Polarity/genetics , Epithelium/metabolism , Intracellular Signaling Peptides and Proteins/genetics , Membrane Proteins/genetics , Spindle Apparatus/genetics , Animals , Cell Line, Tumor , Chick Embryo , Discs Large Homolog 1 Protein , HeLa Cells , Humans , Mitosis , RNA Interference , RNA, Small Interfering
SELECTION OF CITATIONS
SEARCH DETAIL
...