Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
BMC Microbiol ; 14: 86, 2014 Apr 06.
Article in English | MEDLINE | ID: mdl-24708539

ABSTRACT

BACKGROUND: Citrus Huanglongbing (HLB) is the most devastating bacterial citrus disease worldwide. Three Candidatus Liberibacter species are associated with different forms of the disease: Candidatus Liberibacter asiaticus, Candidatus Liberibacter americanus and Candidatus Liberibacter africanus. Amongst them, Candidatus Liberibacter asiaticus is the most widespread and economically important. These Gram-negative bacterial plant pathogens are phloem-limited and vectored by citrus psyllids. The current management strategy of HLB is based on early and accurate detection of Candidatus Liberibacter asiaticus in both citrus plants and vector insects. Nowadays, real time PCR is the method of choice for this task, mainly because of its sensitivity and reliability. However, this methodology has several drawbacks, namely high equipment costs, the need for highly trained personnel, the time required to conduct the whole process, and the difficulty in carrying out the detection reactions in field conditions. RESULTS: A recent DNA amplification technique known as Loop Mediated Isothermal Amplification (LAMP) was adapted for the detection of Candidatus Liberibacter asiaticus. This methodology was combined with a Lateral Flow Dipstick (LFD) device for visual detection of the resulting amplicons, eliminating the need for gel electrophoresis. The assay was highly specific for the targeted bacterium. No cross-reaction was observed with DNA from any of the other phytopathogenic bacteria or fungi assayed. By serially diluting purified DNA from an infected plant, the sensitivity of the assay was found to be 10 picograms. This sensitivity level was proven to be similar to the values obtained running a real time PCR in parallel. This methodology was able to detect Candidatus Liberibacter asiaticus from different kinds of samples including infected citrus plants and psyllids. CONCLUSIONS: Our results indicate that the methodology here reported constitutes a step forward in the development of new tools for the management, control and eradication of this destructive citrus disease. This system constitutes a potentially field-capable approach for the detection of the most relevant HLB-associated bacteria in plant material and psyllid vectors.


Subject(s)
Bacteriological Techniques/methods , Chromatography/methods , Nucleic Acid Amplification Techniques/methods , Rhizobiaceae/isolation & purification , Animals , Citrus/microbiology , Hemiptera/microbiology , Plant Diseases/microbiology , Rhizobiaceae/genetics , Sensitivity and Specificity
2.
Microb Ecol ; 67(2): 237-41, 2014 Feb.
Article in English | MEDLINE | ID: mdl-24173537

ABSTRACT

The Brazilian Microbiome Project (BMP) aims to assemble a Brazilian Metagenomic Consortium/Database. At present, many metagenomic projects underway in Brazil are widely known. Our goal in this initiative is to co-ordinate and standardize these together with new projects to come. It is estimated that Brazil hosts approximately 20 % of the entire world's macroorganism biological diversity. It is 1 of the 17 countries that share nearly 70 % of the world's catalogued animal and plant species, and is recognized as one of the most megadiverse countries. At the end of 2012, Brazil has joined GBIF (Global Biodiversity Information Facility), as associated member, to improve the access to the Brazilian biodiversity data in a free and open way. This was an important step toward increasing international collaboration and clearly shows the commitment of the Brazilian government in directing national policies toward sustainable development. Despite its importance, the Brazilian microbial diversity is still considered to be largely unknown, and it is clear that to maintain ecosystem dynamics and to sustainably manage land use, it is crucial to understand the biological and functional diversity of the system. This is the first attempt to collect and collate information about Brazilian microbial genetic and functional diversity in a systematic and holistic manner. The success of the BMP depends on a massive collaborative effort of both the Brazilian and international scientific communities, and therefore, we invite all colleagues to participate in this project.


Subject(s)
Advisory Committees/organization & administration , Biodiversity , Metagenome , Microbiota , Animals , Brazil , Databases, Factual , Plants/microbiology , Soil Microbiology
3.
Microbiology (Reading) ; 159(Pt 9): 1911-1919, 2013 Sep.
Article in English | MEDLINE | ID: mdl-23813675

ABSTRACT

Xanthomonas citri subsp. citri (Xcc) develops a biofilm structure both in vitro and in vivo. Despite all the progress achieved by studies regarding biofilm formation, many of its mechanisms remain poorly understood. This work focuses on the identification of new genes involved in biofilm formation and how they are related to motility, virulence and chemotaxis in Xcc. A Tn5 library of approximately 6000 Xcc (strain 306) mutants was generated and screened to search for biofilm formation defective strains. We identified 23 genes not previously associated with biofilm formation. The analysis of the 23 mutants not only revealed the involvement of new genes in biofilm formation, but also reinforced the importance of exopolysaccharide production, motility and cell surface structures in this process. This collection of biofilm-defective mutants underscores the multifactorial genetic programme underlying the establishment of biofilm in Xcc.


Subject(s)
Biofilms , Citrus/microbiology , Mutation , Plant Diseases/microbiology , Xanthomonas/genetics , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Gene Library , Mutagenesis, Insertional , Xanthomonas/physiology
4.
BMC Microbiol ; 10: 176, 2010 Jun 18.
Article in English | MEDLINE | ID: mdl-20565886

ABSTRACT

BACKGROUND: Citrus Bacterial Canker (CBC) is a major, highly contagious disease of citrus plants present in many countries in Asia, Africa and America, but not in the Mediterranean area. There are three types of Citrus Bacterial Canker, named A, B, and C that have different genotypes and posses variation in host range within citrus species. The causative agent for type A CBC is Xanthomonas citri subsp. citri, while Xanthomonas fuscans subsp. aurantifolii, strain B causes type B CBC and Xanthomonas fuscans subsp. aurantifolii strain C causes CBC type C. The early and accurate identification of those bacteria is essential for the protection of the citrus industry. Detection methods based on bacterial isolation, antibodies or polymerase chain reaction (PCR) have been developed previously; however, these approaches may be time consuming, laborious and, in the case of PCR, it requires expensive laboratory equipment. Loop-mediated isothermal amplification (LAMP), which is a novel isothermal DNA amplification technique, is sensitive, specific, fast and requires no specialized laboratory equipment. RESULTS: A loop-mediated isothermal amplification assay for the diagnosis of Citrus Bacterial Canker (CBC-LAMP) was developed and evaluated. DNA samples were obtained from infected plants or cultured bacteria. A typical ladder-like pattern on gel electrophoresis was observed in all positive samples in contrast to the negative controls. In addition, amplification products were detected by visual inspection using SYBRGreen and using a lateral flow dipstick, eliminating the need for gel electrophoresis. The sensitivity and specificity of the assay were evaluated in different conditions and using several sample sources which included purified DNA, bacterium culture and infected plant tissue. The sensitivity of the CBC-LAMP was 10 fg of pure Xcc DNA, 5 CFU in culture samples and 18 CFU in samples of infected plant tissue. No cross reaction was observed with DNA of other phytopathogenic bacteria. The assay was capable of detecting CBC-causing strains from several geographical origins and pathotypes. CONCLUSIONS: The CBC-LAMP technique is a simple, fast, sensitive and specific method for the diagnosis of Citrus Bacterial Canker. This method can be useful in the phytosanitary programs of the citrus industry worldwide.


Subject(s)
Citrus/microbiology , Nucleic Acid Amplification Techniques/methods , Plant Diseases/microbiology , Xanthomonas/isolation & purification , Sensitivity and Specificity , Time Factors , Xanthomonas/classification , Xanthomonas/genetics
5.
Appl Microbiol Biotechnol ; 87(2): 467-77, 2010 Jun.
Article in English | MEDLINE | ID: mdl-20449739

ABSTRACT

In this review, we summarise the current knowledge on three pathogens that exhibit distinct tissue specificity and modes of pathogenesis in citrus plants. Xanthomonas axonopodis pv. citri causes canker disease and invades the host leaf mesophyll tissue through natural openings and can also survive as an epiphyte. Xylella fastidiosa and Candidatus Liberibacter are vectored by insects and proliferate in the vascular system of the host, either in the phloem (Candidatus Liberibacter) or xylem (X. fastidiosa) causing variegated chlorosis and huanglongbing diseases, respectively. Candidatus Liberibacter can be found within host cells and is thus unique as an intracellular phytopathogenic bacterium. Genome sequence comparisons have identified groups of species-specific genes that may be associated with the particular lifestyle, mode of transmission or symptoms produced by each phytopathogen. In addition, components that are conserved amongst bacteria may have diverse regulatory actions underpinning the different bacterial lifestyles; one example is the divergent role of the Rpf/DSF cell-cell signalling system in X. citri and X. fastidiosa. Biofilm plays a key role in epiphytic fitness and canker development in X. citri and in the symptoms produced by X. fastidiosa. Bacterial aggregation may be associated with vascular occlusion of the xylem vessels and symptomatology of variegated chlorosis.


Subject(s)
Bacteria/pathogenicity , Citrus/microbiology , Host-Pathogen Interactions , Plant Diseases/microbiology , Bacteria/genetics , Bacteria/metabolism , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Virulence
6.
Genet Mol Biol ; 33(2): 348-53, 2010 Apr.
Article in English | MEDLINE | ID: mdl-21637493

ABSTRACT

In this study, we used real-time quantitative PCR (RT-qPCR) to evaluate the expression of 32 genes of Xanthomonas axonopodis pv. citri related to pathogenicity and virulence that are also involved in copper detoxification. Nearly all of the genes were up-regulated, including copA and copB. Two genes homologous to members of the type II secretion system (xcsH and xcsC) and two involved in the degradation of plant cell wall components (pglA and pel) were the most expressed in response to an elevated copper concentration. The type II secretion system (xcs operon) and a few homologues of proteins putatively secreted by this system showed enhanced expression when the bacteria were exposed to a high concentration of copper sulfate. The enhanced expression of the genes of secretion II system during copper stress suggests that this pathway may have an important role in the adaptative response of X. axonopodis pv. citri to toxic compounds. These findings highlight the potential role of these genes in attenuating the toxicity of certain metals and could represent an important means of bacterial resistance against chemicals used to control diseases.

7.
Genet Mol Biol ; 33(1): 146-53, 2010 Jan.
Article in English | MEDLINE | ID: mdl-21637619

ABSTRACT

The Gram-negative bacterium Xanthomonas axonopodis pv. citri, the causal agent of citrus canker, is a major threat to the citrus industry worldwide. Although this is a leaf spot pathogen, it bears genes highly related to degradation of plant cell walls, which are typically found in plant pathogens that cause symptoms of tissue maceration. Little is known on Xac capacity to cause disease and hydrolyze cellulose. We investigated the contribution of various open reading frames on degradation of a cellulose compound by means of a global mutational assay to selectively screen for a defect in carboxymethyl cellulase (CMCase) secretion in X. axonopodis pv. citri. Screening on CMC agar revealed one mutant clone defective in extracellular glycanase activity, out of nearly 3,000 clones. The insertion was located in the xpsD gene, a component of the type II secretion system (T2SS) showing an influence in the ability of Xac to colonize tissues and hydrolyze cellulose. In summary, these data show for the first time, that X. axonopodis pv. citri is capable of hydrolyzing cellulose in a T2SS-dependent process. Furthermore, it was demonstrated that the ability to degrade cellulose contributes to the infection process as a whole.

SELECTION OF CITATIONS
SEARCH DETAIL
...