Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Chem Biol Interact ; 287: 70-77, 2018 May 01.
Article in English | MEDLINE | ID: mdl-29604267

ABSTRACT

Malaria is one of the most significant infectious diseases that affect poor populations in tropical areas throughout the world. Plants have been shown to be a good source for the development of new antimalarial chemotherapeutic agents, as shown for the discovery of quinine and artemisinin derivatives. Our research group has been working with semisynthetic triterpene derivatives that show potential antimalarial activity toward different strains of Plasmodium falciparum by specifically modulating calcium pathways in the parasite. Promising results were obtained for nanomolar concentrations of the semisynthetic betulinic acid derivative LAFIS13 against the P. falciparum 3D7 strain in vitro, with a selectivity index of 18 compared to a mammalian cell line. Continuing these studies, we present here in vitro and in vivo toxicological evaluations of this compound, followed by docking studies with PfATP6, a sarco/endoplasmic reticulum Ca+2-ATPase (SERCA) protein. LAFIS13 showed an LD50 between 300 and 50 mg/kg, and the acute administration of 50 mg/kg (i.p.) had no negative effects on hematological, biochemical and histopathological parameters. Based on the results of the in vitro assays, LAFIS13 not exerted significant effects on coagulation parameters of human peripheral blood, but a hemolytic activity was verified at higher concentrations. According to the molecular docking study, the PfATP6 protein may be a target for LAFIS13, which corroborates its previously reported modulatory effects on calcium homeostasis in the parasite. Notably, LAFIS13 showed a higher selectivity for the mammalian SERCA protein than for PfATP6, thus impairing the selectivity between parasite and host. In summary, the direct interaction with calcium pumps and the hemolytic potential of the compound proved to be plausible mechanism of LAFIS13 toxicity.


Subject(s)
Antimalarials/pharmacology , Plasmodium falciparum/drug effects , Sarcoplasmic Reticulum Calcium-Transporting ATPases/metabolism , Triterpenes/chemistry , Triterpenes/pharmacology , Animals , Antimalarials/chemistry , Antimalarials/toxicity , Binding Sites , Biomarkers/blood , Blood Coagulation/drug effects , Brain/drug effects , Brain/pathology , Calcium-Transporting ATPases/chemistry , Calcium-Transporting ATPases/metabolism , Female , Humans , Kidney/drug effects , Kidney/pathology , Lung/drug effects , Lung/pathology , Mice , Mice, Inbred BALB C , Molecular Docking Simulation , Pentacyclic Triterpenes , Plasmodium falciparum/metabolism , Protein Binding/drug effects , Protein Structure, Tertiary , Sarcoplasmic Reticulum Calcium-Transporting ATPases/chemistry , Thermodynamics , Triterpenes/toxicity , Betulinic Acid
2.
Anticancer Drugs ; 29(6): 520-529, 2018 07.
Article in English | MEDLINE | ID: mdl-29561308

ABSTRACT

Glioblastoma multiform (GBM) is the most common and devastating type of primary brain tumor, being considered the deadliest of human cancers. In this context, extensive efforts have been undertaken to develop new drugs that exhibit both antiproliferation and antimetastasis effects on GBM. 1,4-Naphthoquinone (1,4-NQ) scaffold has been found in compounds able to inhibit important biological targets associated with cancer, which includes DNA topoisomerase, Hsp90 and monoamine oxidase. Among potential antineoplastic 1,4-NQs is the plant-derived lapachol (2-hydroxy-3-prenyl-1,4-naphthoquinone) that was found to be active against the Walker-256 carcinoma and Yoshida sarcoma. In the present study, we examined the effect of polyamine (PA)-conjugated derivatives of lapachol, nor-lapachol and lawsone on the growth and invasion of the human GBM cells. The conjugation with PA (a spermidine analog) resulted in dose-dependent and time-dependent increase of cytotoxicity of the 1,4-NQs. In addition, in-vitro inhibition of GBM cell invasion by lapachol was increased upon PA conjugation. Previous biochemical experiments indicated that these PA-1,4-NQs are capable of inhibiting DNA human topoisomerase II-α (topo2α), a major enzyme involved in maintaining DNA topology. Herein, we applied molecular docking to investigate the binding of PA-1,4-NQs to the ATPase site of topo2α. The most active molecules preferentially bind at the ATP-binding site of topo2α, which is energetically favored by the conjugation with PA. Taken together, these findings suggested that the PA-1,4-NQ conjugates might represent potential molecules in the development of new drugs in chemotherapy for malignant brain tumors.


Subject(s)
Brain Neoplasms/drug therapy , Glioblastoma/drug therapy , Naphthoquinones/pharmacology , Polyamines/pharmacology , Adenosine Triphosphate/metabolism , Animals , Antineoplastic Agents/chemical synthesis , Antineoplastic Agents/chemistry , Antineoplastic Agents/pharmacology , Antineoplastic Agents, Phytogenic/chemical synthesis , Antineoplastic Agents, Phytogenic/chemistry , Antineoplastic Agents, Phytogenic/pharmacology , Astrocytes/drug effects , Astrocytes/pathology , Binding Sites , Brain Neoplasms/metabolism , Brain Neoplasms/pathology , Cell Line, Tumor , Cerebral Cortex/cytology , Cerebral Cortex/drug effects , DNA Topoisomerases, Type II/metabolism , Glioblastoma/metabolism , Glioblastoma/pathology , Humans , Mice , Naphthoquinones/chemical synthesis , Naphthoquinones/chemistry , Polyamines/chemical synthesis , Polyamines/chemistry , Primary Cell Culture
3.
Chem Biol Drug Des ; 83(4): 401-10, 2014 Apr.
Article in English | MEDLINE | ID: mdl-24165164

ABSTRACT

Monoamine oxidase (MAO) action has been involved in the regulation of neurotransmitters levels, cell signaling, cellular growth, and differentiation as well as in the balance of the intracellular polyamine levels. Although so far obscure, MAO inhibitors are believed to have some effect on tumors progression. 1,4-naphthoquinone (1,4-NQ) has been pointed out as a potential pharmacophore for inhibition of both MAO and DNA topoisomerase activities, this latter associated with antitumor activity. Herein, we demonstrated that certain antitumor 1,4-NQs, including spermidine-1,4-NQ, lapachol, and nor-lapachol display inhibitory activity on human MAO-A and MAO-B. Kinetic studies indicated that these compounds are reversible and competitive MAO inhibitors, being the enzyme selectivity greatly affected by substitutions on 1,4-NQ ring. Molecular docking studies suggested that the most potent MAO inhibitors are capable to bind to the MAO active site in close proximity of flavin moiety. Furthermore, ability to inhibit both MAO-A and MAO-B can be potentialized by the formation of hydrogen bonds between these compounds and FAD and/or the residues in the active site. Although spermidine-1,4-NQs exhibit antitumor action primarily by inhibiting topoisomerase via DNA intercalation, our findings suggest that their effect on MAO activity should be taken into account when their application in cancer therapy is considered.


Subject(s)
Monoamine Oxidase Inhibitors/chemical synthesis , Monoamine Oxidase Inhibitors/pharmacology , Naphthoquinones/chemical synthesis , Antineoplastic Agents/chemical synthesis , Antineoplastic Agents/chemistry , Antineoplastic Agents/pharmacology , Catalytic Domain , Drug Delivery Systems , Enzyme Activation/drug effects , Humans , Kinetics , Molecular Docking Simulation , Monoamine Oxidase/chemistry , Monoamine Oxidase Inhibitors/chemistry , Naphthoquinones/chemistry , Naphthoquinones/pharmacology , Protein Isoforms
SELECTION OF CITATIONS
SEARCH DETAIL
...