Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 13 de 13
Filter
Add more filters










Publication year range
1.
Environ Sci Pollut Res Int ; 31(3): 4067-4079, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38097830

ABSTRACT

Brazil is a major producer of sugarcane bioethanol, which has raised concerns about its environmental impact. The industrial process for obtaining ethanol generates a by-product with a high pollution potential called vinasse. If vinasse reaches watercourses, it may affect the biological communities, such as the aquatic macroinvertebrates, which include species sensitive to environmental contamination. Thus, this study evaluated the ecotoxicological effects of sugarcane vinasse on tropical benthic macroinvertebrates (Allonais inaequalis, Chironomus sancticaroli, Strandesia trispinosa, and Hyalella meinerti). The study was divided into three phases. First, acute toxicity tests were carried out with the four species. The species A. inaequalis (average LC50 = 0.460% confidence interval, CI 0.380-0.540%) was more sensitive to vinasse than C. sancticaroli (LC50 0.721%, CI 0.565-0.878%), H. meinerti (EC50 0.781%, CI 0.637-0.925%), and S. trispinosa (EC50 1.283%, CI 1.045-1.522%). In the second phase, the consequences of chronic exposure to vinasse were assessed in the two more sensitive species. Impairments in reproduction and population growth rates for A. inaequalis and on the development, metamorphosis, and body growth of C. sancticaroli larvae occurred. Finally, the bioaccumulation of metals after chronic exposure was determined in the third phase. Vinasse provoked decreases in the body residue of the essential metals Zn and Mn and the accumulation of Cd, Pb, and Cr with the potential for biomagnification throughout the food webs. Low concentrations of vinasse (below 1%) provoked lethal and sublethal effects on benthic organisms, with several cascade effects on aquatic environments, given the ecological importance of this group in freshwater and terrestrial ecosystems.


Subject(s)
Saccharum , Bioaccumulation , Saccharum/chemistry , Ecosystem , Environmental Pollution , Metals
2.
Sci Total Environ ; 857(Pt 3): 159643, 2023 Jan 20.
Article in English | MEDLINE | ID: mdl-36306835

ABSTRACT

Sugarcane management practices include the application of pesticides, including the herbicide 2,4-D and the insecticide fipronil. In addition, a by-product from the ethanol industry, called vinasse, is commonly applied to fertilize sugarcane areas. The potential risks of these practices to the edge-of-field aquatic ecosystems were assessed in the present study. This was done by contaminating mesocosms with (single and mixtures of) both pesticides and vinasse and evaluating the effects on the midge Chironomus sancticaroli through in-situ and laboratory bioassays. To this end, outdoor mesocosms were treated with fipronil (F), 2,4-D (D), and vinasse (V) alone and with the mixture of fipronil and 2,4-D (M), as well as with both pesticides and vinasse (MV). C. sancticaroli was deployed in mesocosms before contamination in cages, which were taken out 4- and 8-days-post-contamination. Water and sediment samples were also taken for laboratory bioassays on the first day of contamination, as well as 7-, 14-, 21-, 30-, 45-, and 75-days post-contamination. The responses assessed in subchronic assays (8-day) were survival, growth, head capsule width, development, and mentum deformities. Low survival occurred in the in-situ experiments of all treatments due to the low oxygen levels. In the laboratory tests, effects on survival occurred for F, V, and M over time after exposure to both water and sediment. All organisms died post-exposure to water samples from the MV treatment, even 75-days-post-contamination. Impairments in body length and head capsule width occurred for F, V, and M for water and F, V, M, and MV for sediment samples over time. All treatments increased mentum deformities in exposed larvae for any of the sampling periods. The negative effects observed were more significant in the mixture mesocosms (M and MV), thus indicating increased risks from management practices applying these compounds together or with a short time interval in crops.


Subject(s)
Chironomidae , Pesticides , Saccharum , Water Pollutants, Chemical , Animals , Ecosystem , Water , Water Pollutants, Chemical/toxicity , Water Pollutants, Chemical/analysis , 2,4-Dichlorophenoxyacetic Acid/toxicity
3.
Environ Monit Assess ; 194(10): 758, 2022 Sep 09.
Article in English | MEDLINE | ID: mdl-36085206

ABSTRACT

Trace and potentially toxic elements represent one class of food contaminants that has stimulated research. In markets, two main methods of growing vegetables are generally available: conventional and organic. Conventional farming has been the target of some concerns about the use of agrochemicals, especially the excessive use of pesticides, whereas organic agriculture minimizes the use of agrochemicals. As the main route for potentially toxic elements' absorption by humans is by food intake, it is important to evaluate if the method of cultivation influences their concentrations. This study evaluated the levels of potentially toxic elements and nutrients on four leafy vegetables: curly lettuce, collard greens, escarole, and rocket, cultivated by conventional and organic farming. We found that Al, Ba, Fe, and Sr levels were higher in conventional samples, whereas K, Pb, and Zn were higher in organic. Amongst the elements analysed, values of Fe, Al, and K were around 0.2, 0.3, and 70 g kg-1, respectively, except in collard greens, in which the values were lower. On the other hand, Ba, Sr, and Mn presented higher concentration in collard greens compared to the other vegetables in conventional cultivation (~ 35, 80, and 120 mg kg-1, respectively). The principal component analysis result shows that the samples were grouped according to the type of vegetable, regardless of the type of cultivation. Despite this, the evaluation of the cultivation by different types of farming is important in order to choose the healthiest option.


Subject(s)
Environmental Monitoring , Vegetables , Agrochemicals , Humans , Lactuca , Plant Leaves
4.
Sci Total Environ ; 844: 157238, 2022 Oct 20.
Article in English | MEDLINE | ID: mdl-35810907

ABSTRACT

Tropical streams have been intensively impacted by agricultural activities. Among the most important agricultural activities in Brazil, sugarcane production represents a large impact for economic development and for environmental conditions. Permeating sugarcane fields, several headwater streams can be affected by sugarcane cultivation, in special, aquatic biogeochemical cycles because of the deforestation, fertilization, crop residues and higher temperatures in the tropics. In this study, we analyzed the effects of sugarcane cultivation on methane fluxes and concentrations, assuming that carbon cycles are influenced by agricultural activities in headwater streams. Our study aimed to (1) measure methane fluxes and concentrations in tropical streams located in Southeastern Brazil, (2) Analyze whether seasonal cycles influence methane fluxes and concentrations, (3) Evaluate the influence of sugarcane cultivation on methane fluxes and (4) Analyze the association between water chemistry in the methane concentrations in tropical streams. We found mean fluxes of CH4 of 0.280 mmol m-2 d-1, with higher fluxes during the summer and in streams draining preserved catchments. The average CH4 concentrations were 0.695 µmol L-1, with higher values during the summer and in streams draining preserved catchments. Methane concentrations in the studied streams was influenced by dissolved oxygen (negatively), dissolved organic carbon (negatively), water velocity (positively) and conductivity (negatively). Methane concentrations were significantly higher than concentrations found in Temperate Grasslands, Savannas & Shrublands and similar to concentrations found in other tropical biomes (excluding Tropical & Subtropical Moist Broadleaf Forests which receives large amounts of organic inputs). We conclude that sugarcane influence methane concentrations and fluxes in tropical streams by reducing the organic matter availability provided by the native vegetation in soil and water.


Subject(s)
Methane , Rivers , Agriculture , Carbon Dioxide , Forests , Rivers/chemistry , Water
5.
Environ Monit Assess ; 193(2): 63, 2021 Jan 15.
Article in English | MEDLINE | ID: mdl-33447916

ABSTRACT

Iron is an essential mineral and one of the most abundant in soils, presenting itself in the environment as ferrous and ferric ions. As each oxidation state of iron has a different role in the environment, its speciation in environmental studies is important. The determination of ferrous iron received great attention from soil chemists because of its important role in agriculture, in redox processes, and as an electron acceptor in the catalysis of organic matter. Methodologies with the use of colorimetric reagents to determine ferrous iron are divergent and not very clear. In this study, we compared two colorimetric reagents (1,10-phenanthroline and ferrozine) to determine the total concentration of iron, ferrous and ferric ions in soil, using simple and low-cost methodologies. The determination of ferrous and total iron with 1,10-phenanthroline colorimetric reagent, following published instructions, did not correlate with ferrozine method, presenting an erroneous quantification. After neutralizing the extract of 1,10-phenanthroline with NaOH, both colorimetric methods allowed to quantify with precision and high yield the amount of ferrous and total iron extracted from the soil. The oxidation states of iron have a different contribution and importance to the environment. In this sense, the improvement of a widely used methodology is crucial for the better study of iron speciation in soil.


Subject(s)
Iron , Soil , Environmental Monitoring , Ferric Compounds , Ferrous Compounds , Iron/analysis , Minerals , Oxidation-Reduction
6.
Ecotoxicol Environ Saf ; 173: 482-493, 2019 May 30.
Article in English | MEDLINE | ID: mdl-30802737

ABSTRACT

Cholinesterases are frequent targets for toxic effects, namely by insecticides derived from phosphoric and carbamic acids. This effects allows the use of cholinesterase inhibition as a biomarker for contamination of aquatic environments by these specific chemical agents. However, cholinesterases are differently responsive to environmental contaminants, according to their different forms and locations. In addition, cholinesterases seem also to be inhibited by metals, so their use as an environmental criterion requires the prior characterization of their specific forms in each species and tissues, and the study of their sensitivity. The objective of this study was to characterize the cholinesterase isoenzymes present in the brain and dorsal muscle of three tropical fish species, namely Phalloceros harpagos (Lucinda, 2008), Pterygoplichthys pardalis (Castelnau, 1855) and Astyanax altiparanae (Garutti and Britski, 2000). In vitro assays were conducted to quantify the effect of pesticides (dimethoate and carbaryl) and metals (lead and copper) on cholinesterases activity. Although acetylcholinesterase seems to be the most prevalent and abundant form, as commonly described in vertebrates, the here-obtained results showed that three cholinesterase isoenzymes occur in tissues of the three fish species. In addition, the pesticide carbaryl caused a stronger inhibition than dimethoate. Copper caused a significantly higher cholinesterasic inhibition than lead, which is also in line with most results concerning the anticholinesterasic effects by these metals. The here obtained results allowed to conclude that acetylcholinesterase is the predominant form in all tissues from the three analyzed species. In addition, cholinesterases of these three fish were responsive to common environmental contaminants, namely metals and pesticides, similarly to what was already described for fish of temperate areas. This allows using the here proposed fish species in environmental studies for the assessment of the presence of neurotoxicants under neotropical conditions.


Subject(s)
Catfishes/metabolism , Cholinesterase Inhibitors/toxicity , Copper/toxicity , Cyprinodontiformes/metabolism , Lead/toxicity , Pesticides/toxicity , Water Pollutants, Chemical/toxicity , Animals , Brain/drug effects , Brain/enzymology , Carbaryl/toxicity , Cholinesterases/metabolism , Dimethoate/toxicity , Female , Fish Proteins/metabolism , Male , Muscles/drug effects , Muscles/enzymology
7.
J Environ Manage ; 234: 326-335, 2019 Mar 15.
Article in English | MEDLINE | ID: mdl-30639856

ABSTRACT

The use of organic amendments is important for the sustainability of organic farming, with implications for soil organic matter turnover, nutrient cycling and greenhouse gases (GHGs) emissions to the atmosphere. Here, we investigated how long-term citrus organic farming influenced carbon sequestration and GHG emissions under organic and conventional management. We assessed the effects of management systems on soil organic matter dynamics and GHG emissions, focusing on N2O direct emissions from fertilizers. Soil stable isotope C and N compositions (0-100 cm) were used as parameters to assess changes in soil organic matter dynamics, with native forest as the reference. After the conversion from forest to orange orchard, stocks of soil C increased approximately 40 Mg ha-1, whereas stocks were similar in the organic and conventional treatments. Enrichment of 13C through the entire soil profile showed that organic matter from fertilizer replaced the original soil C by at least 20%, considering that poultry was fed only with C4 plants. By contrast, organic farming increased soil N stocks and inorganic N. Nitrogen emission factors for inorganic and organic fertilizers were 1.47 and 3.14, respectively. Organic management increased soil GHG emissions, primarily N2O emissions. Carbon emissions either as CO2 or CH4 were greater at the mid-rows than those under the crop canopy. We conclude that organic management did not promote C sequestration after six years of management. Moreover, organic management increased N2O emissions, and the GHG balance was more negative for organic than that for conventional farming when the ratio between crop harvest and emissions was determined.


Subject(s)
Citrus , Soil , Carbon , Methane , Nitrogen , Nitrous Oxide
8.
Glob Change Biol Bioenergy ; 11(12): 1444-1455, 2019 Dec.
Article in English | MEDLINE | ID: mdl-31894185

ABSTRACT

Phosphorus (P) use in global food and bioenergy production needs to become more efficient and sustainable to reduce environmental impacts and conserve a finite and critical resource (Carpenter & Bennett, Environmental Research Letters, 2011, 6, 014009; Springmann et al., Nature, 2018, 562, 519). Sugarcane is one crop with a large P footprint because production is centered on P-fixing soils with low P availability (Roy et al., Nature Plants, 2016, 2, 16043; Withers et al., Scientific Reports, 2018, 8, 2537). As global demand for processed sugar and bioethanol continues to increase, we advocate that improving P efficiency could become a key sustainability goal for the sugarcane industry. Here, we applied the 5R global P stewardship framework (Withers et al., Ambio, 2015, 44, 193) to identify more sustainable options to manage P in Brazilian sugarcane production. We show that current inputs of P fertilizer to the current crop area could be reduced by over 305 Gg, or 63%, over the next three decades by reducing unnecessary P fertilizer use, better utilization of recyclable bioresources and redesigning recommendation systems. Adoption of these 5R options would save the sugarcane industry in Brazil 528 US$ million and help safeguard global food and energy security.

9.
Sci Total Environ ; 650(Pt 1): 1476-1486, 2019 Feb 10.
Article in English | MEDLINE | ID: mdl-30308834

ABSTRACT

Vinasse is a major byproduct of the sugarcane biofuel industry, recycled in the fields. However, there is evidence that the application of vinasse with mineral nitrogen (N) fertilizers in sugarcane enhances the emission of greenhouse gases (GHGs). Therefore, strategies are needed to decrease the environmental impacts caused by both inputs. We carried out three sugarcane field experiments by applying N fertilizer (ammonium nitrate) with types of vinasses (concentrated-CV and standard-V) in different combinations (vinasses with N fertilizer and vinasses one month before or after mineral N fertilization). The gases nitrous oxide (N2O), carbon dioxide (CO2), and methane (CH4) were measured in one experiment fertilized in the beginning (fall/winter = dry season) and two experiments fertilized in the end (spring = rainy season) of the harvest season. Sugarcane fields were sinks rather than sources of CH4, while total carbon emitted as CO2 was similar between seasons and treatments. The effect of mineral fertilization and vinasses (CV and V) on N2O emissions was highly dependent on soil moisture (rain events). The N2O-N fertilizer emission factor (EF) varied from 0.07% to 0.51%, whereas the average EF of V and CV were 0.66% and 0.34%, respectively. On average across the three experiments, the combination of vinasse (CV or V) with N fertilizer increased the N2O emissions 2.9-fold compared to that of N fertilizer alone. For CV + N, the EF was 0.94% of the applied N and 0.23% of the ammonium nitrate-N, and for V + N (EF = 0.47%), increased emissions were observed in two out of three experiments. The strategy of anticipating or postponing vinasse application by one month with respect to mineral N reduced the N2O emissions by 51% for CV, but not for V. Therefore, to avoid boosting N2O emissions, we suggest applying vinasses (CV and V) before or after mineral N fertilization.

10.
Environ Geochem Health ; 41(3): 1339-1350, 2019 Jun.
Article in English | MEDLINE | ID: mdl-30460427

ABSTRACT

Aquatic contamination by potentially toxic metals is a problem that has been aggravated, especially due to the quantity and the diversity of sources. Locating these sources is not always an easy task, especially because of the wide variety of possibilities. In this context, the application of geostatistical methods may represent an excellent tool to find out sources of metal contaminants in aquatic systems. Thus, the objective of this work was to elaborate an approach to identify sources of potentially toxic metals (Zn, Ba, Pb, Cr, Mn and Fe), by relating their spatial-temporal variations with the local land use patterns, along a longitudinal profile of the Pirapora River, located in the State of Sao Paulo, Brazil. For this purpose, water samples were collected at different points, taking into consideration each specific land use pattern and quantifying the metals contents by microwave plasma atomic emission spectrometry. In this work, thirteen land use patterns have been identified: mining, forestry, abandoned pasture, water, urban area, human occupation, floodplain, bare soil, temporary crop, roads, forest, streets and pasture. The results revealed temporal variations for the metals Ba, Cr, Fe, and Pb and spatial for Zn and Mn, making possible to correlate the presence of these two latter metals with mining and forestry, the most proeminent activities in the region. Overall, this work proposes a model which brings together geoprocessing and analytical methods, in order to correlate spatial-temporal variations of potentially toxic metals with specific land use patterns of a determined region, aiming the environmental monitoring.


Subject(s)
Environmental Monitoring/methods , Metals, Heavy/analysis , Models, Theoretical , Water Pollutants, Chemical/analysis , Agriculture , Brazil , Forests , Humans , Metals, Heavy/toxicity , Mining , Rivers , Soil/chemistry , Spatio-Temporal Analysis , Water Pollutants, Chemical/toxicity
11.
Environ Sci Pollut Res Int ; 25(15): 14899-14910, 2018 May.
Article in English | MEDLINE | ID: mdl-29546518

ABSTRACT

Over time, many pollutants of anthropogenic origin have caused the contamination of aquatic ecosystems. Among several characteristics, these compounds can reach the trophic chain, causing deleterious interactions with the biota. Pharmaceutical substances can be included in this scenario as emerging contaminants that reach the aquatic environment because of direct human and veterinary usage, and release by industrial effluents, as well as through domestic dumping of surplus drugs. The effects of these compounds on exposed organisms have been studied since the 1990s, but ecotoxicological data for such chemicals are still scarce especially concerning aquatic organisms from tropical regions. Paracetamol and propranolol were selected for this study since they are frequently found in surface waters. Paracetamol is a drug used as analgesic and antipyretic, while propranolol, a ß-blocker, is used in the treatment of hypertension. The objective of this study was to assess the toxic effects of these substances on the neotropical freshwater fish Phalloceros harpagos after acute (96 h) and chronic (28 days) exposures. In order to understand the effects of these drugs on P. harpagos, biochemical markers were selected, including the enzymes involved in oxidative stress, xenobiotic metabolism, and neurotransmission (catalase, glutathione-S-transferase, and cholinesterase activities, respectively). After acute exposure, no significant alterations were observed for catalase activity, suggesting the absence of oxidative stress. On the contrary, significant alterations in glutathione-S-transferases activity were described for the higher concentrations of both pharmaceuticals after acute exposure. In addition, acute exposure to paracetamol caused a significant increase of cholinesterase activity. None of the tested pharmaceuticals caused significant changes in catalase or cholinesterase activities after chronic exposure. Glutathione S-transferases activity was significantly increased for propranolol following chronic exposure, indicating the potential involvement of phase II detoxification pathway.


Subject(s)
Acetaminophen/adverse effects , Cyprinodontiformes/metabolism , Propranolol/adverse effects , Water Pollutants, Chemical/adverse effects , Analgesics, Non-Narcotic/adverse effects , Animals , Antihypertensive Agents/adverse effects , Antipyretics/adverse effects , Biomarkers/metabolism , Dose-Response Relationship, Drug , Female , Male
12.
J Environ Manage ; 215: 91-99, 2018 Jun 01.
Article in English | MEDLINE | ID: mdl-29567556

ABSTRACT

The contamination of aquatic and terrestrial environments by potentially toxic metals is highlighted by the possible impacts that their high availability can have on the environment. Thus, the development of alternative absorbents that can be used in the remediation of contaminated areas is of great environmental interest. Humin, one of the fractions of natural organic matter, is a promising alternative in studies on the retention of different metals that are environmentally toxic. In this study, the influence of the organic and inorganic humin constituents that are involved in the retention of aluminum species was evaluated. After extraction and calcination to obtain the ashes (inorganic constituents), humin and ash samples were structurally characterized by Fourier transform infrared spectroscopy and scanning electron microscopy. Interaction studies between aluminum-humin and ash-humin were performed in the pH range of 4.0-8.0 and with various contact times. The results of the characterization of humin and ash showed different functional groups present in the structures of these materials. Based on the results of the interaction between humin-aluminum and ash-aluminum, it can be inferred that both the organic and inorganic components of humin are efficient at absorbing aluminum. However, the adsorption isotherms showed that humin and the ashes have different adsorption behaviors. Humin is the only fraction of natural organic matter with a significant inorganic constituent content; it is the fraction least used by researchers in this field and is often discarded as waste. In light of this, the results obtained in this work highlight the importance of humin as a natural adsorbent material. Humin may be promising for the removal of aluminum species in contaminated environments due to the presence of organic and inorganic constituents.


Subject(s)
Aluminum/chemistry , Water Purification , Adsorption , Spectroscopy, Fourier Transform Infrared
13.
J Environ Manage ; 206: 980-988, 2018 Jan 15.
Article in English | MEDLINE | ID: mdl-29223108

ABSTRACT

Sugarcane is a widespread bioenergy crop in tropical regions, and the growing global demand for renewable energy in recent years has led to a dramatic expansion and intensification of sugarcane agriculture in Brazil. Currently, extensive areas of low-intensity pasture are being converted to sugarcane, while management in the remaining pasture is becoming more intensive, i.e., includes tilling and fertilizer use. In this study, we assessed how such changes in land use and management practices alter emissions of greenhouse gases (GHG) such as CO2, N2O and CH4 by measuring in situ fluxes for one year after conversion from low-intensity pasture to conventional sugarcane agriculture and management-intensive pasture. Results show that CO2 and N2O fluxes increased significantly in pasture and sugarcane with tillage, fertilizer use, or both combined. Emissions were highly variable for all GHGs, yet, cumulatively, it was clear that annual emissions in CO2-equivalent (CO2-eq) were higher in management-intense pasture and sugarcane than in unmanaged pasture. Surprisingly, tilled pasture with fertilizer (management-intensive pasture) resulted in higher CO2-eq emissions than conventional sugarcane. We concluded that intensification of pasture management and the conversion of pasture to sugarcane can increase the emission factor (EF) estimated for sugarcane produced in Brazil. The role of management practices and environmental conditions and the potential for reducing emissions are discussed.


Subject(s)
Agriculture , Greenhouse Gases , Saccharum , Animals , Brazil , Carbon Dioxide , Cattle , Gases , Greenhouse Effect , Methane , Nitrous Oxide
SELECTION OF CITATIONS
SEARCH DETAIL
...