Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Type of study
Language
Publication year range
1.
Mol Biol Rep ; 51(1): 822, 2024 Jul 18.
Article in English | MEDLINE | ID: mdl-39023774

ABSTRACT

BACKGROUND: Testicular descent is a physiological process regulated by many factors. Eventually, disturbances in the embryological/fetal development path facilitate the occurrence of scrotal hernia, a congenital malformation characterized by the presence of intestinal portions within the scrotal sac due to the abnormal expansion of the inguinal ring. In pigs, some genes have been related to this anomaly, but the genetic mechanisms involved remain unclear. This study aimed to investigate the expression profile of a set of genes potentially involved with the manifestation of scrotal hernia in the inguinal ring tissue. METHODS AND RESULTS: Tissue samples from the inguinal ring/canal of normal and scrotal hernia-affected male pigs with approximately 30 days of age were used. Relative expression analysis was performed using qPCR to confirm the expression profile of 17 candidate genes previously identified in an RNA-Seq study. Among them, the Myosin heavy chain 1 (MYH1), Desmin (DES), and Troponin 1 (TNNI1) genes were differentially expressed between groups and had reduced levels of expression in the affected animals. These genes encode proteins involved in the formation of muscle tissue, which seems to be important for increasing the resistance of the inguinal ring to the abdominal pressure, which is essential to avoid the occurrence of scrotal hernia. CONCLUSIONS: The downregulation of muscular candidate genes in the inguinal tissue clarifies the genetic mechanisms involved with this anomaly in its primary site, providing useful information for developing strategies to control this malformation in pigs and other mammals.


Subject(s)
Down-Regulation , Scrotum , Animals , Male , Swine/genetics , Scrotum/metabolism , Scrotum/abnormalities , Scrotum/pathology , Down-Regulation/genetics , Hernia, Inguinal/genetics , Hernia, Inguinal/metabolism , Hernia, Inguinal/veterinary , Gene Expression Profiling/methods , Swine Diseases/genetics , Swine Diseases/metabolism , Myosin Heavy Chains/genetics , Myosin Heavy Chains/metabolism
2.
Front Physiol ; 12: 712464, 2021.
Article in English | MEDLINE | ID: mdl-34381378

ABSTRACT

White Striping (WS) has been one of the main issues in poultry production in the last years since it affects meat quality. Studies have been conducted to understand WS and other myopathies in chickens, and some biological pathways have been associated to the prevalence of these conditions, such as extracellular calcium level, oxidative stress, localized hypoxia, possible fiber-type switching, and cellular repairing. Therefore, to understand the genetic mechanisms involved in WS, 15 functional candidate genes were chosen to be analyzed by quantitative PCR (qPCR) in breast muscle of normal and WS-affected chickens. To this, the pectoral major muscle (PMM) of 16 normal and 16 WS-affected broilers were collected at 42 days of age and submitted to qRT-PCR analysis. Out of the 15 genes studied, six were differentially expressed between groups. The CA2, CSRP3, and PLIN1 were upregulated, while CALM2, DNASE1L3, and MYLK2 genes were downregulated in the WS-affected when compared to the normal broilers. These findings highlight that the disruption on muscle and calcium signaling pathways can possibly be triggering WS in chickens. Improving our understanding on the genetic basis involved with this myopathy might contribute for reducing WS in poultry production.

3.
Mol Biol Rep ; 47(1): 45-53, 2020 Jan.
Article in English | MEDLINE | ID: mdl-31583571

ABSTRACT

The normalization with proper reference genes is a crucial step to obtain accurate mRNA expression levels in quantitative PCR (qPCR) studies. Therefore, in this study, 10 reference candidate genes were evaluated to determine their stability in normal pectoralis major muscle of broilers and those counterparts affected with White Striping (WS) myopathy at 42 days age. Four different tools were used for ranking the most stable genes: GeNorm, NormFinder, BestKeeper and Comparative Ct (ΔCt), and a general ranking was performed using the RankAggreg tool to select the best reference genes among all tools. From the 10 genes evaluated in the breast muscle of broilers, 8 were amplified. Most of the algorithms/tools indicated the same two genes, RPL30 and RPL5, as the most stable in the broilers breast muscle. In addition, there was agreement among the tools for the least stable genes: MRPS27, GAPDH and RPLP1 in the broilers breast muscle. Therefore, it is interesting to note that even with different tools for evaluating gene expression, there was consensus on the most and least stable genes. These results indicate that the Ribosomal protein L30 (RPL30) and Ribosomal protein L5 (RPL5) can be recommended for accurate normalization in qPCR studies with chicken pectoralis major muscle affected with White Striping and other myopathies.


Subject(s)
Chickens/genetics , Gene Expression Profiling/standards , Genes, Essential/genetics , Muscular Diseases/genetics , Pectoralis Muscles/metabolism , Real-Time Polymerase Chain Reaction/standards , Animals , Gene Expression , Gene Expression Profiling/methods , Gene Expression Regulation , Muscular Diseases/metabolism , Muscular Diseases/veterinary , Poultry Diseases/genetics , Poultry Diseases/metabolism , Real-Time Polymerase Chain Reaction/methods , Reference Standards
SELECTION OF CITATIONS
SEARCH DETAIL
...