Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Language
Publication year range
1.
Life Sci ; 265: 118769, 2021 Jan 15.
Article in English | MEDLINE | ID: mdl-33309717

ABSTRACT

AIMS: Investigate the role of melatonin on the regulation of body temperature in aged animals that have impaired melatonin production. MATERIAL AND METHODS: Aged Male Wistar rats were randomly assigned to the following groups: 1) control (vehicle added to the water bottles during the dark phase) and 2) melatonin-treated (10 mg/kg melatonin added to the water bottles during the dark phase). Before and after 16 weeks of vehicle or melatonin treatment, control group and melatonin-treated animals were acutely exposed to 18 °C for 2 h for an acute cold challenge and thermal images were obtained using an infrared camera. After 16 weeks, animals were euthanized and brown and beige adipocytes were collected for analysis of genes involved in the thermogenesis process by real-time PCR, and the uncoupling protein expression was evaluated by immunoblotting. Browning intensity of beige adipocytes were quantified by staining with hematoxylin-eosin. KEY FINDINGS: Chronic melatonin supplementation induced a minor increase in body mass and increased the animal's thermogenic potential in the cold acute challenge. Brown and beige adipocytes acted in a coordinated and complementary way to ensure adequate heat production. SIGNIFICANCE: Melatonin plays an important role in the thermoregulatory mechanisms, ensuring greater capacity to withstand cold and, also, participating in the regulation of energy balance.


Subject(s)
Body Temperature Regulation/drug effects , Body Weight/drug effects , Cold-Shock Response/drug effects , Dietary Supplements , Melatonin/pharmacology , Animals , Cold Temperature/adverse effects , Immunoblotting , Male , Rats , Rats, Wistar , Real-Time Polymerase Chain Reaction
2.
Brain Res ; 1704: 40-46, 2019 02 01.
Article in English | MEDLINE | ID: mdl-30222958

ABSTRACT

A local renin-angiotensin system (RAS) has been postulated in the pineal gland. In addition to angiotensin II (Ang II), other active metabolites have been described. In this study, we aimed to investigate a role for Ang IV in melatonin synthesis and the presence of its proposed (IRAP)/AT4 receptor (insulin-regulated aminopeptidase) in the pineal gland. The effect of Ang IV on melatonin synthesis was investigated in vitro using isolated pinealocytes. IRAP protein expression and activity were evaluated by Western blot and fluorimetry using Leu-4Me-ß-naphthylamide as a substrate. Melatonin was analyzed by HPLC, calcium content by confocal microscopy and cAMP by immunoassay. Ang IV significantly augmented the NE-induced melatonin synthesis to a similar degree as that achieved by Ang II. This Ang IV effect in pinealocytes appears to be mediated by an increase in the intracellular calcium content but not by cAMP. The (IRAP)/AT4 expression and activity were identified in the pineal gland, which were significantly higher in membrane fractions than in soluble fractions. Ang IV significantly reduced IRAP activity in the pineal membrane fractions. The main findings of the present study are as follows: (1) Ang IV potentiates NE-stimulated melatonin production in pinealocytes, (2) the (IRAP)/AT4 receptor is present in the rat pineal gland, and (3) Ang IV inhibits IRAP activity and increases pinealocytes [Ca2+]i. We conclude that Ang IV is an important component of RAS and modulates melatonin synthesis in the rat pineal gland.


Subject(s)
Angiotensin II/analogs & derivatives , Cystinyl Aminopeptidase/metabolism , Melatonin/biosynthesis , Pineal Gland/metabolism , Angiotensin II/pharmacology , Animals , Astrocytes/cytology , Astrocytes/drug effects , Astrocytes/metabolism , Calcium/metabolism , Cells, Cultured , Male , Pineal Gland/cytology , Pineal Gland/drug effects , Rats , Rats, Wistar
3.
Growth Horm IGF Res ; 24(6): 268-70, 2014 Dec.
Article in English | MEDLINE | ID: mdl-25312793

ABSTRACT

Under physical activity a wide variety of cellular metabolic products and hormones are altered in the blood stream, including lactate, a metabolite of pyruvate reduction, and growth hormone (GH). Although a positive correlation between lactate and GH seems to exist during exercise, the role of lactate as a mediator of GH production has never been investigated. Thus, the aim of this study was to investigate whether lactate could activate the somatotropic axis and stimulate GH synthesis/release, contributing to the enhanced somatotropic activity described in exercise conditions. Male adult Wistar rats were acutely treated with sodium lactate [15 or 150µmols, i.p.] at the beginning of the active period (Zeitgeber time 13-14), and euthanized by decapitation 30, 60 and 120min after the injections. Serum GH concentration were determined using ELISA and Gh and Igf-1 mRNA expressions were quantified by qPCR. Serum GH concentration and Gh mRNA expression were increased 30min after lactate injections for both treatments. However, [15µmols] of lactate injection kept GH serum concentration chronically high throughout the experimental period. Igf-1 mRNA expression was increased only 60min after challenge with [15µmols] of lactate, time point which corresponded to 30min after the serum GH peak. The present results led us to conclude that lactate mediates activation of the somatotropic axis, therefore emphasizing its possible role on GH synthesis/release, and further indicating that it could play a part on the increased GH secretion observed in exercise conditions.


Subject(s)
Growth Hormone/blood , Insulin-Like Growth Factor I/metabolism , Lactic Acid/pharmacology , Liver/metabolism , Pituitary Gland/metabolism , Animals , Enzyme-Linked Immunosorbent Assay , Growth Hormone/genetics , Insulin-Like Growth Factor I/genetics , Liver/drug effects , Male , Pituitary Gland/drug effects , RNA, Messenger/genetics , Rats , Rats, Wistar , Real-Time Polymerase Chain Reaction , Reverse Transcriptase Polymerase Chain Reaction
4.
J Pineal Res ; 57(1): 67-79, 2014 Aug.
Article in English | MEDLINE | ID: mdl-24819547

ABSTRACT

Melatonin is a neurohormone that works as a nighttime signal for circadian integrity and health maintenance. It is crucial for energy metabolism regulation, and the diabetes effects on its synthesis are unresolved. Using diverse techniques that included pineal microdialysis and ultrahigh-performance liquid chromatography, the present data show a clear acute and sustained melatonin synthesis reduction in diabetic rats as a result of pineal metabolism impairment that is unrelated to cell death. Hyperglycemia is the main cause of several diabetic complications, and its consequences in terms of melatonin production were assessed. Here, we show that local high glucose (HG) concentration is acutely detrimental to pineal melatonin synthesis in rats both in vivo and in vitro. The clinically depressive action of high blood glucose concentration in melatonin levels was also observed in type 1 diabetes patients who presented a negative correlation between hyperglycemia and 6-sulfatoxymelatonin excretion. Additionally, high-mean-glycemia type 1 diabetes patients presented lower 6-sulfatoxymelatonin levels when compared to control subjects. Although further studies are needed to fully clarify the mechanisms, the present results provide evidence that high circulating glucose levels interfere with pineal melatonin production. Given the essential role played by melatonin as a powerful antioxidant and in the control of energy homeostasis, sleep and biological rhythms and knowing that optimal glycemic control is usually an issue for patients with diabetes, melatonin supplementation may be considered as an additional tool to the current treatment.


Subject(s)
Diabetes Mellitus, Experimental/metabolism , Hyperglycemia/metabolism , Melatonin/analogs & derivatives , Animals , Arylalkylamine N-Acetyltransferase/metabolism , Cell Survival , Diabetes Mellitus, Experimental/complications , Humans , Hyperglycemia/etiology , Male , Melatonin/metabolism , Microdialysis , Pineal Gland/metabolism , Rats , Rats, Wistar
5.
Invest Ophthalmol Vis Sci ; 52(10): 7416-22, 2011 Sep 22.
Article in English | MEDLINE | ID: mdl-21896852

ABSTRACT

PURPOSE: Retinal melatonin synthesis occurs in the photoreceptor layer in a circadian manner, controlling several physiologic rhythmic phenomena, besides being the most powerful natural free radical scavenger. The purpose of the present work was to evaluate the diurnal profile of retinal melatonin content and the regulation of its synthesis in the retina of streptozotocin-induced diabetic rats. METHODS: Diabetes was induced in male Wistar rats (12 hour-12 hour light/dark cycle) with streptozotocin. Control, diabetic, and insulin-treated diabetic animals were killed every 3 hours throughout the light-dark cycle. Retinal melatonin content was measured by high-performance liquid chromatography, arylalkylamine N-acetyltransferase (AANAT) activity was analyzed by radiometric assay, Bmal1 gene expression was determined by qPCR, and cyclic adenosine monophosphate (cAMP) content was assessed by ELISA. RESULTS: Control animals showed a clear retinal melatonin and AANAT activity daily rhythm, with high levels in the dark. Diabetic rats had both parameters reduced, and the impairment was prevented by immediate insulin treatment. In addition, the Bmal1 expression profile was lost in the diabetic group, and the retinal cAMP level was reduced 6 hours after lights on and 3 hours after lights off. CONCLUSIONS: The present work shows a melatonin synthesis reduction in diabetic rats retinas associated with a reduction in AANAT activity that was prevented by insulin treatment. The Bmal1-flattened gene expression and the cAMP reduction seem to be responsible for the AANAT activity decrease in diabetic animals. The melatonin synthesis reduction observed in the pineal gland of diabetic rats is also observed in a local melatonin tissue synthesizer, the retina.


Subject(s)
Diabetes Mellitus, Experimental/metabolism , Diabetic Retinopathy/metabolism , Melatonin/biosynthesis , Retina/metabolism , ARNTL Transcription Factors/genetics , Animals , Arylalkylamine N-Acetyltransferase/metabolism , Cell Survival , Chromatography, High Pressure Liquid , Circadian Rhythm/physiology , Cyclic AMP/metabolism , DNA Fragmentation , Enzyme-Linked Immunosorbent Assay , Gene Expression , Male , Pineal Gland/surgery , Polymerase Chain Reaction , Radiometry , Rats , Rats, Wistar
6.
Investigative Ophthalmology & Visual Science ; 52(10): 7416-7422, 22 sept.2011.
Article in English | Sec. Est. Saúde SP, SESSP-IBPROD, Sec. Est. Saúde SP, SESSP-IBACERVO | ID: biblio-1063621

ABSTRACT

Retinal melatonin synthesis occurs in the photoreceptor layer in a circadian manner, controlling several physiologic rhythmic phenomena, besides being the most powerful natural free radical scavenger. The purpose of the present work was to evaluate the diurnal profile of retinal melatonin content and the regulation of its synthesis in the retina of streptozotocin-induced diabetic rats.Diabetes was induced in male Wistar rats (12 hour-12 hour light/dark cycle) with streptozotocin. Control, diabetic, and insulin-treated diabetic animals were killed every 3 hours throughout the light-dark cycle. Retinal melatonin content was measured by high-performance liquid chromatography, arylalkylamine N-acetyltransferase (AANAT) activity was analyzed by radiometric assay, Bmal1 gene expression was determined by qPCR, and cyclic adenosine monophosphate (cAMP) content was assessed by ELISA.Control animals showed a clear retinal melatonin and AANAT activity daily rhythm, with high levels in the dark. Diabetic rats had both parameters reduced, and the impairment was prevented by immediate insulin treatment. In addition, the Bmal1 expression profile was lost in the diabetic group, and the retinal cAMP level was reduced 6 hours after lights on and 3 hours after lights off.The present work shows a melatonin synthesis reduction in diabetic rats retinas associated with a reduction in AANAT activity that was prevented by insulin treatment. The Bmal1-flattened gene expression and the cAMP reduction seem to be responsible for the AANAT activity decrease in diabetic animals. The melatonin synthesis reduction observed in the pineal gland of diabetic rats is also observed in a local melatonin tissue synthesizer, the retina.


Subject(s)
Rats , Photoreceptor Cells , Streptozocin/metabolism , Melatonin/analysis , Receptors, Melatonin/administration & dosage , Diabetes Mellitus, Experimental/chemically induced , Insulin/therapeutic use
7.
Endocrinology ; 149(12): 6326-35, 2008 Dec.
Article in English | MEDLINE | ID: mdl-18703636

ABSTRACT

Bone morphogenetic protein 9 (BMP-9), a member of the TGF-beta superfamily predominantly expressed in nonparenchymal liver cells, has been demonstrated to improve glucose homeostasis in diabetic mice. Along with this therapeutic effect, BMP-9 was proposed as a candidate for the hepatic insulin-sensitizing substance (HISS). Whether BMP-9 plays a physiological role in glucose homeostasis is still unknown. In the present study, we show that BMP-9 expression and processing is severely reduced in the liver of insulin-resistant rats. BMP-9 expression and processing was directly stimulated by in situ exposition of the liver to the combination of glucose and insulin and oral glucose in overnight fasted rats. Additionally, prolonged fasting (72 h) abrogated refeeding-induced BMP-9 expression and processing. Previous exposition to dexamethasone, a known inductor of insulin resistance, reduced BMP-9 processing stimulated by the combination of insulin and glucose. Finally, we show that neutralization of BMP-9 with an anti-BMP-9 antibody induces glucose intolerance and insulin resistance in 12-h fasted rats. Collectively, the present results demonstrate that BMP-9 plays an important role in the control of glucose homeostasis of the normal rat. Additionally, BMP-9 is expressed and processed in an HISS-like fashion, which is impaired in the presence of insulin resistance. BMP-9 regulation according to the feeding status and the presence of diabetogenic factors reinforces the hypothesis that BMP-9 might exert the role of HISS in glucose homeostasis physiology.


Subject(s)
Glucocorticoids/pharmacology , Glucose/pharmacology , Growth Differentiation Factor 2/metabolism , Insulin/pharmacology , Liver/drug effects , Animals , Blotting, Western , Dexamethasone/administration & dosage , Dexamethasone/pharmacology , Gene Expression/drug effects , Glucocorticoids/administration & dosage , Glucose/administration & dosage , Glucose Intolerance , Growth Differentiation Factor 2/genetics , Insulin/administration & dosage , Insulin Resistance , Liver/metabolism , Rats , Reverse Transcriptase Polymerase Chain Reaction
SELECTION OF CITATIONS
SEARCH DETAIL
...