Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Bioresour Technol ; 102(23): 11003-10, 2011 Dec.
Article in English | MEDLINE | ID: mdl-21993328

ABSTRACT

The biodegradation capacity of aliphatic and aromatic hydrocarbons of petrochemical oily sludge in liquid medium by a bacterial consortium and five pure bacterial cultures was analyzed. Three bacteria isolated from petrochemical oily sludge, identified as Stenotrophomonas acidaminiphila, Bacillus megaterium and Bacillus cibi, and two bacteria isolated from a soil contaminated by petrochemical waste, identified as Pseudomonas aeruginosa and Bacillus cereus demonstrated efficiency in oily sludge degradation when cultivated during 40 days. The bacterial consortium demonstrated an excellent oily sludge degradation capacity, reducing 90.7% of the aliphatic fraction and 51.8% of the aromatic fraction, as well as biosurfactant production capacity, achieving 39.4% reduction of surface tension of the culture medium and an emulsifying activity of 55.1%. The results indicated that the bacterial consortium has potential to be applied in bioremediation of petrochemical oily sludge contaminated environments, favoring the reduction of environmental passives and increasing industrial productivity.


Subject(s)
Bacteria/metabolism , Biotechnology/methods , Sewage/microbiology , Bacillus/metabolism , Bacillus megaterium/metabolism , Biodegradation, Environmental , Culture Media/chemistry , Hydrocarbons/chemistry , Hydrogen-Ion Concentration , Mutagens , Oils , Petroleum/metabolism , Soil Microbiology , Soil Pollutants/metabolism , Stenotrophomonas/metabolism , Surface Tension , Surface-Active Agents/chemistry , Temperature , Time Factors
2.
Int J Dev Neurosci ; 29(2): 115-20, 2011 Apr.
Article in English | MEDLINE | ID: mdl-21255637

ABSTRACT

Perinatal hypoxia-ischemia (HI) gives rise to inadequate substrate supply to the brain tissue, resulting in damage to neural cells. Previous studies at different time points of development, and with different animal species, suggest that the HI insult causes oxidative damage and changes Na+, K+-ATPase activity, which is known to be very susceptible to free radical-related lipid peroxidation. The aim of the present study was to establish the onset of the oxidative damage response in neonatal Wistar rats subjected to brain HI, evaluating parameters of oxidative stress, namely nitric oxide production, lipoperoxidation by thiobarbituric acid reactive substances (TBA-RS) production and malondialdehyde (MDA) levels, reactive species production by DCFH oxidation, antioxidant enzymatic activities of catalase, glutathione peroxidase, superoxide dismutase as well as Na+, K+-ATPase activity in hippocampus and cerebral cortex. Rat pups were subjected to right common carotid ligation followed by exposure to a hypoxic atmosphere (8% oxygen and 92% nitrogen) for 90 min. Animals were sacrificed by decapitation 0, 1 and 2 h after HI and both hippocampus and cerebral cortex from the right hemisphere (ipsilateral to the carotid occlusion) were dissected out for further experimentation. Results show an early decrease of Na+, K+-ATPase activity (at 0 and 1 h), as well as a late increase in MDA levels (2 h) and superoxide dismutase activity (1 and 2 h after HI) in the hippocampus. There was a late increase in both MDA levels and DCFH oxidation (1 and 2 h) and an increase in superoxide dismutase activity (2 h after HI) in cortex; however Na+, K+-ATPase activity remained unchanged. We suggest that neonatal HI induces oxidative damage to both hippocampus and cortex, in addition to a decrease in Na+, K+-ATPase activity in hippocampus early after the insult. These events might contribute to the later morphological damage in the brain and indicate that it would be essential to pursue neuroprotective strategies, aimed to counteract oxidative stress, as early as possible after the HI insult.


Subject(s)
Brain/physiopathology , Hypoxia-Ischemia, Brain/physiopathology , Animals , Brain/anatomy & histology , Brain/pathology , Catalase/metabolism , Glutathione Peroxidase/metabolism , Hypoxia-Ischemia, Brain/pathology , Malondialdehyde/metabolism , Oxidative Stress/physiology , Rats , Rats, Wistar , Reactive Nitrogen Species/metabolism , Reactive Oxygen Species/metabolism , Sodium-Potassium-Exchanging ATPase/metabolism , Superoxide Dismutase/metabolism , Thiobarbituric Acid Reactive Substances/metabolism
3.
Environ Monit Assess ; 167(1-4): 33-47, 2010 Aug.
Article in English | MEDLINE | ID: mdl-20512618

ABSTRACT

The impact of drilling oil activities in the Brazilian Bonito Field/Campos Basin (Rio de Janeiro) shell drilling (300 m) using nonaqueous fluids (NAFs) was investigated with respect to Al, Fe, Mn, Ba, Co, Pb, Cu, As, Hg, Cr, Ni, Zn, Cd, V, and aliphatic and polynuclear aromatic hydrocarbons concentrations in the sediment. Sampling took place in three different times during approximately 33 months. For the metals Al, As, Co, Cr, Cu, Cd, Fe, Ni, Mn, V, and Zn, no significant variation was observed after drilling activities in most of the stations. However, an increase was found in Ba concentration--due to the drilling activity--without return to the levels found 22 months after drilling. High Ba contents was already detected prior to well drilling, probably due to drilling activities in other wells nearby. Hydrocarbon contents also suggest previous anthropogenic activities. Aliphatic hydrocarbon contents were in the range usually reported in other drilling sites. The same behavior was observed in the case of polyaromatic hydrocarbons. Nevertheless, the n-alkane concentration increased sharply after drilling, returning almost to predrilling levels 22 months after drilling activities.


Subject(s)
Environmental Monitoring/methods , Extraction and Processing Industry , Geologic Sediments/analysis , Metals/analysis , Water Pollutants/analysis , Brazil , Hydrocarbons , Petroleum
SELECTION OF CITATIONS
SEARCH DETAIL
...