Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Neurobiol Dis ; 193: 106465, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38460800

ABSTRACT

Children who experienced moderate perinatal asphyxia (MPA) are at risk of developing long lasting subtle cognitive and behavioral deficits, including learning disabilities and emotional problems. The prefrontal cortex (PFC) regulates cognitive flexibility and emotional behavior. Neurons that release serotonin (5-HT) project to the PFC, and compounds modulating 5-HT activity influence emotion and cognition. Whether 5-HT dysregulations contribute to MPA-induced cognitive problems is unknown. We established a MPA mouse model, which displays recognition and spatial memory impairments and dysfunctional cognitive flexibility. We found that 5-HT expression levels, quantified by immunohistochemistry, and 5-HT release, quantified by in vivo microdialysis in awake mice, are reduced in PFC of adult MPA mice. MPA mice also show impaired body temperature regulation following injection of the 5-HT1A receptor agonist 8-OH-DPAT, suggesting the presence of deficits in 5-HT auto-receptor function on raphe neurons. Finally, chronic treatment of adult MPA mice with fluoxetine, an inhibitor of 5-HT reuptake transporter, or the 5-HT1A receptor agonist tandospirone rescues cognitive flexibility and memory impairments. All together, these data demonstrate that the development of 5-HT system function is vulnerable to moderate perinatal asphyxia. 5-HT hypofunction might in turn contribute to long-term cognitive impairment in adulthood, indicating a potential target for pharmacological therapies.


Subject(s)
Selective Serotonin Reuptake Inhibitors , Serotonin , Humans , Child , Mice , Animals , Serotonin/metabolism , Receptor, Serotonin, 5-HT1A , Asphyxia , Fluoxetine/pharmacology , Serotonin Receptor Agonists/pharmacology , Receptors, Serotonin , Cognition , 8-Hydroxy-2-(di-n-propylamino)tetralin/pharmacology , Hypoxia
2.
Sci Rep ; 12(1): 3186, 2022 02 24.
Article in English | MEDLINE | ID: mdl-35210456

ABSTRACT

Sexual differentiation of the brain is influenced by testosterone and its metabolites during the perinatal period, when many aspects of brain development, including the maturation of GABAergic transmission, occur. Whether and how testosterone signaling during the perinatal period affects GABAergic transmission is unclear. Here, we analyzed GABAergic circuit functional markers in male, female, testosterone-treated female, and testosterone-insensitive male rats after the first postnatal week and in young adults. In the hippocampus, mRNA levels of proteins associated with GABA signaling were not significantly affected at postnatal day (P) 7 or P40. Conversely, membrane protein levels of KCC2, which are critical for determining inhibition strength, were significantly higher in females compared to males and testosterone-treated females at P7. Further, female and testosterone-insensitive male rats at P7 showed higher levels of the neurotrophin BDNF, which is a powerful regulator of neuronal function, including GABAergic transmission. Finally, spontaneous GABAergic currents in hippocampal CA1 pyramidal cells were more frequent in females and testosterone-insensitive males at P40. Overall, these results show that perinatal testosterone levels modulate GABAergic circuit function, suggesting a critical role of perinatal sex hormones in regulating network excitability in the adult hippocampus.


Subject(s)
GABAergic Neurons/metabolism , Hippocampus/metabolism , Neurons/metabolism , Pyramidal Cells/metabolism , Symporters/metabolism , Synaptic Transmission/drug effects , Testosterone/pharmacology , Androgen-Insensitivity Syndrome/genetics , Animals , Animals, Newborn/metabolism , Female , GABAergic Neurons/drug effects , Hippocampus/drug effects , Male , Mutation , Neurons/drug effects , Pyramidal Cells/drug effects , Rats , Rats, Sprague-Dawley , Receptors, Androgen/metabolism , Sex Characteristics
3.
Molecules ; 18(9): 10857-69, 2013 Sep 04.
Article in English | MEDLINE | ID: mdl-24008245

ABSTRACT

Lectin from the seeds of Dioclea lasiophylla (DlyL) was purified in a single step by affinity chromatography on a Sephadex® G-50 column. DlyL strongly agglutinated rabbit erythrocytes and was inhibited by monosaccharides (D-mannose and α-methyl-D-mannoside) and glycoproteins (ovalbumin and fetuin). Similar to other Diocleinae lectins, DlyL has three chains, α, ß and γ, with mass of 25,569 ± 2, 12,998 ± 1 and 12,588 ± 1 Da, respectively, and has no disulfide bonds. The hemagglutinating activity of DlyL was optimal in pH 8.0, stable at a temperature of 70 °C and decreased in EDTA solution, indicating that lectin activity is dependent on divalent metals. DlyL exhibited low toxicity on Artemia sp. nauplii, but this effect was dependent on the concentration of lectin in solution. DlyL immobilized on cyanogen bromide-activated Sepharose® 4B bound 0.917 mg of ovalbumin per cycle, showing the ability to become a tool for glycoproteomics studies.


Subject(s)
Dioclea/chemistry , Hemagglutinins/pharmacology , Mannose-Binding Lectins/pharmacology , Plant Extracts/pharmacology , Seeds/chemistry , Animals , Artemia , Chelating Agents/chemistry , Chromatography, Affinity , Edetic Acid/chemistry , Erythrocytes/drug effects , Hemagglutination , Hemagglutinins/chemistry , Hemagglutinins/isolation & purification , Hydrogen-Ion Concentration , Lethal Dose 50 , Mannose-Binding Lectins/chemistry , Mannose-Binding Lectins/isolation & purification , Ovalbumin/chemistry , Plant Extracts/chemistry , Plant Extracts/isolation & purification , Protein Binding , Rabbits , Sepharose/chemistry
4.
Protein Pept Lett ; 20(11): 1204-10, 2013 Nov.
Article in English | MEDLINE | ID: mdl-23795620

ABSTRACT

VML is a lectin from Vatairea macrocarpa seeds that has various biological activities. Here, we describe three new lectin isoforms from V. macrocarpa identified through genomic DNA analysis. One of these isoforms has high similarity to VML, while another that has noteworthy differences. We have denoted the new isoforms as VML-2, VML-3 and VML-4. Recombinant VML (rVML) and VML-2 (rVML-2) were expressed in Escherichia coli and were anticipated to have similar biological activity compared to native VML. Recombinant lectins were produced using a synthetic gene strategy to improve the expression levels. We obtained two active recombinant lectin isoforms from V. macrocarpa, and there was no significant difference between their biological activities. The conservation between carbohydrate-binding sites of recombinant and native proteins was demonstrated by specific inhibition of hemagglutin activity by D-galactose and lactose. However, no inhibition was observed in the presence of glucose and mannose. Our data show that the recombinant lectins VML and VML-2 are active and capable of recognising D-galactose and lactose. Moreover, the absence of glycosylation does not interfere with their biological activity.


Subject(s)
Fabaceae/chemistry , Genome, Plant , Plant Lectins/isolation & purification , Protein Isoforms/isolation & purification , Fabaceae/genetics , Galactose/chemistry , Gene Expression Regulation, Plant , Mannose/chemistry , Plant Lectins/chemistry , Plant Lectins/genetics , Protein Isoforms/chemistry , Recombinant Proteins/chemistry , Recombinant Proteins/isolation & purification , Seeds/chemistry
5.
Biochimie ; 94(2): 525-32, 2012 Feb.
Article in English | MEDLINE | ID: mdl-21924319

ABSTRACT

The crystal structure and pro-inflammatory property of a lectin from the seeds of Dioclea wilsonii (DwL) were analyzed to gain a better understanding of structure/function relationships of Diocleinae lectins. Following crystallization and structural determination by standard molecular replacement techniques, DwL was found to be a tetramer based on PISA analysis, and composed by two metal-binding sites per monomer and loops which are involved in molecular oligomerization. DwL presents 96% and 99% identity with two other previously described lectins of Dioclea rostrata (DRL) and Dioclea grandiflora (DGL). DwL differs structurally from DVL and DRL with regard to the conformation of the carbohydrate recognition domain and related biological activities. The structural analysis of DwL in comparison to other Diocleinae lectins can be related to the differences in the dose-dependent pro-inflammatory effect elicited in Wistar rats, probably via specific interactions with mast cells complex carbohydrate, resulting in significant paw edema. DwL appears to be involved in positive modulation of mast cell degranulation via recognition of surface carbohydrates. Since this recognition is dependent on site volume and CRD configuration, edematogenesis mediated by resident cells varies in potency and efficacy among different Diocleinae lectins.


Subject(s)
Cell Degranulation/drug effects , Dioclea/chemistry , Edema/immunology , Mast Cells/immunology , Plant Lectins/pharmacology , Animals , Binding Sites , Cell Degranulation/immunology , Crystallography, X-Ray , Dose-Response Relationship, Immunologic , Edema/chemically induced , Edema/pathology , Hindlimb , Mast Cells/drug effects , Mast Cells/pathology , Models, Molecular , Organ Size/drug effects , Plant Lectins/chemistry , Plant Lectins/isolation & purification , Protein Binding , Protein Multimerization , Protein Structure, Tertiary , Rats , Rats, Wistar , Seeds/chemistry , Sequence Homology, Amino Acid , Thermodynamics
6.
Molecules ; 16(11): 9077-89, 2011 Oct 28.
Article in English | MEDLINE | ID: mdl-22037666

ABSTRACT

Lectin from the seeds of Dioclea sclerocarpa (DSL) was purified in a single step by affinity chromatography on a Sephadex G-50 column. The primary sequence, as determined by tandem mass spectrometry, revealed a protein with 237 amino acids and 81% of identity with ConA. DSL has a molecular mass of 25,606 Da. The ß and γ chains weigh 12,873 Da and 12,752 Da, respectively. DSL hemagglutinated rabbit erythrocytes (both native and treated with proteolytic enzymes), showing stability even after one hour of exposure to a specific pH range. The hemagglutinating activity of DSL was optimal between pH 6.0 and 8.0, but was inhibited after incubation with D-galactose and D-glucose. The pure protein possesses a molecular mass of 25 kDa by SDS-PAGE and 25,606 Da by mass spectrometry. The secondary structure content was estimated using the software SELCON3. The results indicate that b-sheet secondary structures are predominant in DSL (approximately 42.3% antiparallel b-sheet and 6.7% parallel b-sheet). In addition to the b-sheet, the predicted secondary structure of DSL features 4.1% a-helices, 15.8% turns and 31.3% other contributions. Upon thermal denaturation, evaluated by measuring changes in ellipticity at 218 nm induced by a temperature increase from 20 °C to 98 °C, DSL displayed cooperative sigmoidal behavior with transition midpoint at 84 °C and permitted the observation of two-state model (native and denatured).


Subject(s)
Dioclea/chemistry , Lectins/chemistry , Seeds/chemistry , Tandem Mass Spectrometry/methods , Amino Acid Sequence , Animals , Circular Dichroism , Dioclea/anatomy & histology , Hemagglutination/drug effects , Lectins/genetics , Lectins/pharmacology , Molecular Sequence Data , Molecular Weight , Protein Structure, Secondary , Rabbits , Sequence Alignment
SELECTION OF CITATIONS
SEARCH DETAIL
...