Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
J Hazard Mater ; 368: 63-71, 2019 04 15.
Article in English | MEDLINE | ID: mdl-30665109

ABSTRACT

Supramolecular structures were produced by auto-assembling CuCN blocks derived from copper-lipopeptides (CuLps) isolated from bioleaching liquor. Lipopeptides produced by B. subtilis Hyhel1 have been previously related as responsible by bioleaching and intracellular copper crystal production. However, there were no records relating CuLps to extracellular copper crystal production. To study this process, CuLps were isolated from bioleaching liquor and kept at 8 °C to facilitate the CuLps aggregation. After three months, blue spheres (BS) were observed in the CuLp fraction. These spheres were then analyzed by SEM-EDS, MALDI-TOF-MS/MS, GC-MS and FTIR. SEM-EDS analysis showed that they were formed by polycrystalline structures mainly composed by Cu (46.5% m/m) and positioned concentrically. MALDI-TOF-MS/MS and GCMS showed that peptide bonds of CuLp were broken, producing lipid chains and amino acids free. The FTIR of BS showed three nitro groups: CN, NN and NO, which were not found in the control. These data suggest that the CuLp amino acid produced a CN group linked to copper, as CuCN blocks, that auto-assembled in supramolecular structures. This phenomenon could be explored as a method to recover copper and to obtain supramolecular CuCN structures, which in turn may be used as template for superconductor or computing devices.


Subject(s)
Copper/chemistry , Cyanides/chemistry , Lipopeptides/chemistry , Electronic Waste
2.
Water Sci Technol ; 68(5): 1031-6, 2013.
Article in English | MEDLINE | ID: mdl-24037153

ABSTRACT

CuO/ZnO coupled oxide films were electrodeposited onto an aluminum substrate and tested as photocatalysts in degradation of phenol molecules in aqueous solution under sunlight. The obtained films were characterized by X-ray diffraction, scanning electron microscopy (SEM) and energy dispersive X-ray spectroscopy (EDS). The results showed that the photocatalytic activity of films was significant, especially to coupled oxide film with a CuO/ZnO ratio equal to 0.697, which presented about 70% degradation of the aromatic molecules and 42% of total organic carbon (TOC) removal at 300 min under solar irradiation. Therefore, this work highlights the potential application of CuO/ZnO coupled oxide films obtained by electrodeposition onto aluminum substrate in the field of photocatalysis.


Subject(s)
Copper/chemistry , Electroplating/methods , Phenols/chemistry , Photochemistry/methods , Sunlight , Zinc Oxide/chemistry , Catalysis
SELECTION OF CITATIONS
SEARCH DETAIL
...