Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Type of study
Language
Publication year range
1.
J Hazard Mater ; 417: 126004, 2021 09 05.
Article in English | MEDLINE | ID: mdl-33992010

ABSTRACT

Nanoencapsulation of biopesticides is an important strategy to increase the efficiency of these compounds, reducing losses and adverse effects on non-target organisms. This study describes the preparation and characterisation of zein nanoparticles containing the botanical compounds limonene and carvacrol, responsive to proteolytic enzymes present in the insects guts. The spherical nanoparticles, prepared by the anti-solvent precipitation method, presented in the nanoparticle tracking analysis (NTA) a concentration of 4.7 × 1012 ± 1.3 × 1011 particles.mL-1 and an average size of 125 ± 2 nm. The formulations showed stability over time, in addition to not being phytotoxic to Phaseolus vulgaris plants. In vivo tests demonstrated that formulations of zein nanoparticles containing botanical compounds showed higher mortality to Spodoptera frugiperda larvae. In addition, the FTIC probe (fluorescein isothiocyanate) showed wide distribution in the larvae midgut, as well as being identified in the feces. The trypsin enzyme, as well as the enzymatic extract from insects midgut, was effective in the degradation of nanoparticles containing the mixture of botanical compounds, significantly reducing the concentration of nanoparticles and the changes in size distribution. The zein degradation was confirmed by the disappearance of the protein band in the electrophoresis gel, by the formation of the lower molecular weight fragments and also by the greater release of FTIC after enzymes incubation. In this context, the synthesis of responsive nanoparticles has great potential for application in pest management, increasing the selectivity and specificity of the system and contributing to a more sustainable agriculture.


Subject(s)
Nanoparticles , Pesticides , Zein , Agriculture , Drug Carriers , Drug Compounding , Nanoparticles/toxicity , Particle Size
2.
Sci Rep ; 11(1): 5271, 2021 03 05.
Article in English | MEDLINE | ID: mdl-33674750

ABSTRACT

Spodoptera frugiperda is a pest of economic importance for several crops with resistance reports to Bt crops and pesticides. Eco-friendly Bt biopesticides may be an alternative to chemical insecticides due to their selectivity and specificity. However, the efficacy of Bt biopesticides may be influenced by the association with other chemicals, such as adjuvants. This study evaluated the compatibility and toxicity of Bt biopesticides mixed with adjuvants for the control of S. frugiperda. The treatments included the association of Dipel SC and Dipel PM with adjuvants. Compatibility tests were used to evaluate the Bt mixture. Bt suspensions obtained from mixtures of Bt and adjuvants at 106 and 3 × 108 spores/mL-1 were used to evaluate S. frugiperda mortality and distilled water was used as the control. The addition of the adjuvant LI increased growth and sporulation, indicating compatibility with Bt biopesticides. The other adjuvants were toxic to reducing Bt growth and sporulation. Only the mixture of Bt with LI and Bt alone was effective to S. frugiperda. The addition of adjuvants to Bt biopesticide affect the Bt sporulation, growth and mortality.


Subject(s)
Adjuvants, Pharmaceutic/pharmacology , Bacillus thuringiensis Toxins/pharmacology , Bacillus thuringiensis/drug effects , Bacillus thuringiensis/metabolism , Bacterial Proteins/pharmacology , Biological Control Agents/pharmacology , Endotoxins/pharmacology , Insecticides/pharmacology , Spodoptera/microbiology , Animals , Bacillus thuringiensis/growth & development , Crop Protection/methods , Crops, Agricultural/drug effects , Crops, Agricultural/growth & development , Drug Compounding/methods , Gossypium/drug effects , Gossypium/growth & development , Insecticide Resistance/drug effects
3.
J Econ Entomol ; 112(6): 2614-2619, 2019 12 09.
Article in English | MEDLINE | ID: mdl-31353405

ABSTRACT

Biological control is one of the strategies to reduce populations of diamondback moth, Plutella xylostella (Linnaeus) (Lepidoptera: Plutellidae), the major pest of brassica. Entomopathogen-based biopesticides are recommended and used for its control, reducing the constant use of chemical pesticides. Predators and/or fungal entomopathogens have an increasing interest to be used against diamondback moth, and the compatibility of these control agents in the field is important for pest management. Here we experimentally investigate the effects of diamondback moth larvae treated with a biopesticidal formulation of Beauveria bassiana (Balsamo) Vuillemin in the feeding preference and functional response of the ring-legged earwig. We used untreated and B. bassiana-treated diamondback moth fourth instars (over a 24-h period of exposure) and Euborellia annulipes (Lucas) fifth instars. The nymphs were included in choice condition tests and different larval densities to the analysis of feeding preference and functional responses, respectively. Euborellia annulipes nymphs exhibited no feeding preference under choice conditions but presented different types of functional response: Type II on untreated and type III on fungus-treated diamondback moth larvae. The interaction between E. annulipes and B. bassiana observed in our study contributes to the understanding of the predator-prey-pathogen relationships with implications for P. xylostella integrated management strategies.


Subject(s)
Beauveria , Hypocreales , Moths , Animals , Larva , Pest Control, Biological
4.
Pest Manag Sci ; 75(7): 1855-1865, 2019 Jul.
Article in English | MEDLINE | ID: mdl-30653814

ABSTRACT

BACKGROUND: Botanical compounds from plant species are known to have pesticidal activity and have been used in integrated pest management programs. The varied spectrum of the pesticidal action of these compounds can also avoid selection of resistance in pest populations. In this study, mixtures of the botanical compounds geraniol, eugenol and cinnamaldehyde were encapsulated in zein nanoparticles to improve their stability and efficiency. Biological effects of the nano-scale formulations of the botanical compounds were evaluated against two agricultural pests: the two-spotted spider mite (Tetranychus urticae) and the soybean looper (Chrysodeixis includes). RESULTS: The formulations were stable over time (120 days) with a high encapsulation efficiency (>90%). Nanoencapsulation also provided protection against degradation of the compounds during storage and led to a decrease in toxicity to non-target organisms. The release of the compounds (especially eugenol and cinnamaldehyde) from the nanoparticles was directly influenced by temperature, and the main mechanism of release was through a diffusion-based process. Nanoencapsulated compounds also showed superior efficiency compared to the emulsified compounds in terms of repellency and insecticidal activity. CONCLUSION: The findings of this study indicate that the convergence of botanical compounds with nano-scale formulation has the potential to improve efficacy for their sustainable use in integrated pest management in agriculture. © 2019 Society of Chemical Industry.


Subject(s)
Acaricides , Insecticides , Moths/drug effects , Nanoparticles/chemistry , Tetranychidae/drug effects , Zein/chemistry , Acrolein/analogs & derivatives , Acrolein/chemistry , Acrolein/pharmacology , Acyclic Monoterpenes , Animals , Cell Line , Cricetulus , Drug Carriers , Eugenol/chemistry , Eugenol/pharmacology , Larva/drug effects , Mice , Temperature , Terpenes/chemistry , Terpenes/pharmacology
5.
J Invertebr Pathol ; 157: 147-149, 2018 09.
Article in English | MEDLINE | ID: mdl-29807026

ABSTRACT

Single concentration and virulence (mean lethal concentration) bioassays were performed to evaluate the susceptibility of S. albula second instar larvae to seven Bacillus thuringiensis-based biopesticides. Bioassays were conducted using three replicates and repeated three times at 25 °C, 70 ±â€¯10% RH, and a 12:12 (light/dark) photoperiod; mortality was recorded seven days after treatment. The results were subjected to a Tukey's test and Probit analysis. Agree, DiPel SC, and XenTari achieved mortality rates of up to 80%, with the first of these being the most virulent against S. albula. Different Dipel formulations showed different degrees of larvicidal activity.


Subject(s)
Bacillus thuringiensis/pathogenicity , Pest Control, Biological/methods , Spodoptera/parasitology , Animals , Biological Control Agents , Virulence
SELECTION OF CITATIONS
SEARCH DETAIL
...