Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Language
Publication year range
1.
J Pharm Pharmacol ; 67(12): 1682-95, 2015 Dec.
Article in English | MEDLINE | ID: mdl-26256440

ABSTRACT

OBJECTIVES: The aim of this study was to investigate the cytotoxic effect of new 1,4-naphthoquinone- 1,2,3-triazoles, named C2 to C8 triazole derivatives, towards human cancer cell lines. METHODS: The effect on cell viability was assessed by MTT and propidium iodide assays. The cytotoxic effect of C2 and C3 in K562 and HL-60 cells were analyzed by flow cytometry, DNA fragmentation and reactive oxygen species (ROS) production. Western blot and q-PCR procedures were also performed. KEY FINDINGS: C2 and C3 inhibited both K562 and HL-60 cells growth in a concentration-dependent manner. C2 presented the highest cytotoxic activity with an IC50 of approximately 14 µm and 41 µm for HL-60 and K562 cells, respectively, while being less toxic to normal peripheral blood monocyte cells. Both derivatives induced cellular changes in HL-60 cells, characteristic of apoptosis, such as mitochondrial membrane depolarization, phosphatidylserine externalization, increasing sub-G1 phase, DNA fragmentation, downregulating Bcl-2 protein and upregulating Bax protein. In K562 cells, C2 and C3 induced S-phase arrest of cell cycle, which was associated with upregulation of p21. The effect of these derivatives in HL-60 cells can be related to the ROS intracellular level. CONCLUSION: Taken together our results showed that C2 and C3 triazole derivatives presented the best potential for drug design.


Subject(s)
Antineoplastic Agents/pharmacology , Leukemia/drug therapy , Naphthoquinones/pharmacology , Triazoles/pharmacology , Antineoplastic Agents/chemistry , Apoptosis/drug effects , Apoptosis Regulatory Proteins/metabolism , Cell Cycle Proteins/metabolism , Cell Proliferation/drug effects , Cell Survival/drug effects , DNA Fragmentation , Dose-Response Relationship, Drug , HL-60 Cells , Humans , Inhibitory Concentration 50 , K562 Cells , Leukemia/metabolism , Leukemia/pathology , Membrane Potential, Mitochondrial/drug effects , Molecular Structure , Naphthoquinones/chemistry , Oxidative Stress/drug effects , Reactive Oxygen Species/metabolism , S Phase Cell Cycle Checkpoints/drug effects , Structure-Activity Relationship , Triazoles/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...