Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Mater Sci Eng C Mater Biol Appl ; 115: 110927, 2020 Oct.
Article in English | MEDLINE | ID: mdl-32600678

ABSTRACT

Nanocomposite materials have been proposed to enhance the properties of different materials. In this study, palygorskite (Pal) clay is proposed as a support matrix for silver nanoparticles stabilised with cashew gum (Anacardium occidentale L.) (AgNPs-CG), producing the Pal/AgNPs-CG nanocomposite, whose bactericidal activity was studied. AgNPs-CG was synthesised using a green method in which CG acted as a reducing and stabilising agent for these nanostructures. AgNPs-CGs were subsequently characterised then adsorbed to the Pal surface, which was previously treated to remove impurities such as quartz. Pal and Pal/AgNPs-CG were characterised by X-ray diffraction, specific surface area, thermal analysis, Fourier transform infrared spectroscopy, scanning electron microscopy, energy dispersive spectroscopy, and transmission electron microscopy. The antibacterial activity assay by the direct contact method showed that the synergistic effect of the combination of AgNPs-CG and Pal increased the bactericidal effect of the nanomaterial compared with the AgNPs-CG activity, reaching a percentage inhibition of up to 70.2% against E. coli and 85.3% against S. aureus. Nanocomposite atoxicity was demonstrated by the Artemia Salina model. Thus, the Pal/AgNPs-CG nanocomposite emerges as a nanomaterial with potential antibacterial applications.


Subject(s)
Anacardium/chemistry , Magnesium Compounds/chemistry , Plant Gums/chemistry , Silicon Compounds/chemistry , Silver/pharmacology , Anti-Bacterial Agents , Escherichia coli/drug effects , Green Chemistry Technology , Metal Nanoparticles/chemistry , Microbial Sensitivity Tests , Microscopy, Electron, Scanning , Microscopy, Electron, Transmission , Nanocomposites/chemistry , Silver/chemistry , Spectrometry, X-Ray Emission , Spectroscopy, Fourier Transform Infrared , Staphylococcus aureus/drug effects , X-Ray Diffraction
2.
Toxicol Rep ; 7: 209-216, 2020.
Article in English | MEDLINE | ID: mdl-32025498

ABSTRACT

2-oleyl-1,3-dipalmitoyl-glycerol (ODG) was obtained from Platonia insignis (bacurizeiro) seeds. There are no studies on its toxicity and protective activities against oxidative stress. This study was aimed to evaluate antioxidant effects in vitro, as well as to evaluate the toxicological and mutagenic effects of the ODG. ODG showed a median lethal dose (LD50) greater than 1200 µg mL-1 in A. salina. In the assay of A. cepa (0.2-0.002 mg mL-1) the ODG compound at the highest concentration was slightly cytotoxic with decrease in the size of roots and mitotic indexes, but did not induce chromosomal alterations. ODG (8.75-140.00 µg mL-1) was found to reduce nitric oxide production by 41.6 %, while the antioxidant standard ascorbic acid (AA) reduced 54.14 %. ODG (15.625-250.00 µg mL-1) promoted removal of the hydroxyl radical by 35.69 % at the highest concentration and was able to prevent lipid peroxidation induced by 2,2'-azobis-2-amidinopropane (AAPH), inhibiting the amount of TBARS formed, up to 35.69 %, a result close to that obtained with AA. Thus, ODG moderately reduced the levels of hydroxyl radicals, nitric oxide, and TBARS in vitro and was nontoxic at low concentrations.

3.
Curr Clin Pharmacol ; 13(2): 100-109, 2018.
Article in English | MEDLINE | ID: mdl-29493463

ABSTRACT

Oxidative stress is a major mechanism underlying the development of various neurodegenerative diseases (Alzheimer, Parkinson, Huntington and amyotrophic lateral sclerosis). Excessive formation of reactive oxygen species (ROS) and nitrogen (RNSs) can overburden the ability of the enzymatic antioxidant defense mechanisms (superoxide dismutase, catalase and glutathione reductase) and non-enzymatic (uric acid, ascorbic acid, α-tocopherol and reduced glutathione), causing the development of oxidative stress, and consequently, impairing the neuronal system cells by means of oxidative damage to a variety of important biological molecules such as lipids, DNA and proteins. Considering the importance of oxidative stress in neurodegenerative diseases, the present review aims to address the main parameters evaluated in in vitro studies on oxidative stress in different models of neurodegenerative diseases.The literary review was conducted through Pubmed, Science Direct, LILACS, Scielo and Google using following keywords: oxidative stress, neurodegenerative diseases and parameters of oxidative stress. We selected articles published between 2002 and 2017.The in vitro evaluation of the oxidative stress related parameters has provided a preliminary view about the pathogenesis of many neurodegenerative diseases (Alzheimer's, Parkinson's, Huntington's and Amyotrophic lateral sclerosis). In this way, it has demonstrated the mechanism of action of ROS/RNSs in these diseases by direct or indirect detection through several experimental procedures in vitro.


Subject(s)
Antioxidants/therapeutic use , Models, Neurological , Neurodegenerative Diseases/metabolism , Oxidative Stress/physiology , Reactive Oxygen Species/metabolism , Animals , Antioxidants/pharmacology , Humans , Neurodegenerative Diseases/drug therapy , Oxidative Stress/drug effects
SELECTION OF CITATIONS
SEARCH DETAIL
...