Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
3 Biotech ; 13(12): 405, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37987025

ABSTRACT

Gametocytes are the forms of the malaria parasite that are essential for the continuation of the transmission cycle to the vector Anopheles. This study aimed to evaluate the parasite density of Plasmodium spp gametocytes in samples from patients in the region of Porto Velho, Rondônia. Slides containing patient samples were selected from users who sought out care at the Center for Research in Tropical Medicine (CEPEM) during the period from January to December 2016. Samples of Plasmodium vivax and Plasmodium falciparum were selected for analysis of their respective gametocytes. In parallel, monitoring was performed in cultures of NF54 strain P. falciparum gametocytes. Of 248 thick smear slides (EG) evaluated in double blind, 142 (57.2%) were detected with P. vivax, of this total 47 (18.9%) had gametocytes, 1 (0.4%) with LVC negative diagnosis for gametocytes and 1 (0.4%) Pv + Pf (mixed malaria). Regarding P. falciparum, the total number of samples analyzed was 106 (42.7%), of which 20 (8.0%) had gametocytes detected, 6 (2.4%) LVC negative for gametocyte forms, and 3 (1.2%) Pv + Pf (mixed malaria), Plasmodium malariae species was not detected among the samples. The results showed that P. vivax gametocytes were present in the first days of symptoms, with a higher prevalence in patients with two crosses, a fact that was also observed in patients with P. falciparum regarding the prevalence of gametocytes. Faced with this problem, it is necessary to monitor the fluctuation of gametocytes, since these forms are responsible for continuing the malaria cycle within the mosquito vector.

2.
3 Biotech ; 11(12): 505, 2021 Dec.
Article in English | MEDLINE | ID: mdl-34881167

ABSTRACT

In 2019, 229 million cases of malaria were recorded worldwide. For epidemiologic surveillance and proper treatment of persons infected with Plasmodium spp., rapid detection of infections by Plasmodium spp. is critical. Thus, Plasmodium spp. diagnosis is one of the indispensable measures for malaria control. Although microscopy is the gold standard for diagnosis, it has restrictions related mainly to the lack of qualified human resources, which is a problem in many regions. Thus, this review presents major innovations in diagnostic methods as alternatives to or complementary to microscopy. Detection platforms in lateral flow systems, electrochemical immunosensors, molecular biology and, more recently, those integrated with smartphones, are highlighted, among others. The advanced improvement of these tests aims to provide techniques that are sensitive and specific, but also quick, easy to handle and free from the laboratory environment. In this way, the tracking of malaria cases can become increasingly effective and contribute to controlling the disease.

4.
Parasitol Res ; 119(6): 1879-1887, 2020 Jun.
Article in English | MEDLINE | ID: mdl-32382989

ABSTRACT

Malaria, caused by protozoa of the genus Plasmodium, is a disease that infects hundreds of millions of people annually, causing an enormous social burden in many developing countries. Since current antimalarial drugs are starting to face resistance by the parasite, the development of new therapeutic options has been prompted. The enzyme Plasmodium falciparum enoyl-ACP reductase (PfENR) has a determinant role in the fatty acid biosynthesis of this parasite and is absent in humans, making it an ideal target for new antimalarial drugs. In this sense, the present study aimed at evaluating the in silico binding affinity of natural and synthetic amides through molecular docking, in addition to their in vitro activity against P. falciparum by means of the SYBR Green Fluorescence Assay. The in vitro results revealed that the natural amide piplartine (1a) presented partial antiplasmodial activity (20.54 µM), whereas its synthetic derivatives (1m-IC50 104.45 µM), (1b, 1g, 1k, and 14f) and the natural amide piperine (18a) were shown to be inactive (IC50 > 200 µM). The in silico physicochemical analyses demonstrated that compounds 1m and 14f violated the Lipinski's rule of five. The in silico analyses showed that 14f presented the best binding affinity (- 13.047 kcal/mol) to PfENR and was also superior to the reference inhibitor triclosan (- 7.806 kcal/mol). In conclusion, we found that the structural modifications in 1a caused a significant decrease in antiplasmodial activity. Therefore, new modifications are encouraged in order to improve the activity observed.


Subject(s)
Amides/pharmacology , Antimalarials/pharmacology , Plasmodium falciparum/drug effects , Amides/chemistry , Animals , Chlorocebus aethiops , Computer Simulation , Enoyl-(Acyl-Carrier-Protein) Reductase (NADH)/antagonists & inhibitors , Enoyl-(Acyl-Carrier-Protein) Reductase (NADH)/metabolism , Hep G2 Cells , Humans , Malaria, Falciparum , Molecular Docking Simulation , Piper nigrum , Plasmodium falciparum/enzymology , Triclosan/pharmacology , Vero Cells
SELECTION OF CITATIONS
SEARCH DETAIL
...