Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Eur J Med Chem ; 186: 111887, 2020 Jan 15.
Article in English | MEDLINE | ID: mdl-31787363

ABSTRACT

The current treatment of Chagas disease is based on the use of two drugs, nifurtimox (Nfx) and benznidazole (Bnz), both of which present limited efficacy in the chronic stage of the disease and toxic side effects. Thus, the discovery of novel compounds is urgently required. Herein, we report the successful synthesis of 4-nitroimidazole analogs of Bnz via nucleophilic aromatic substitution or cycloaddition reactions. The analogs were biologically evaluated, and compound 4 (4-cyclopropyl-1-(1-methyl-4-nitro-1H-imidazole-5-yl)-1H-1,2,3-triazole) was identified as the most potent against both the trypomastigote (IC50 = 5.4 µM) and amastigote (IC50 = 12.0 µM) forms of T. cruzi, showing activity in the same range as Bnz (IC50 = 8.8 and 8.7 µM, respectively). The cytotoxic and genotoxic activities of compounds 5, 4 and 11 were assessed. These three compounds were cytotoxic and genotoxic to RAW and HepG2 cells and mutagenic to Salmonella enterica strains. However, 4 exhibited toxic effects only at concentrations higher than those needed for trypanocidal activity. Molecular docking of 4 showed the importance of the size and π-π interactions between the nitroimidazole and the cofactor (flavin mononucleotide) of T.cruzi-nitroreductase (TcNTR). Moreover, the residues His503 and Tyr545 are relevant for binding to TcNTR. Our design strategy was capable of generating novel and active Bnz analogs.


Subject(s)
Antiprotozoal Agents/pharmacology , Nitroimidazoles/pharmacology , Salmonella enterica/drug effects , Trypanocidal Agents/pharmacology , Trypanosoma cruzi/drug effects , Animals , Antiprotozoal Agents/chemical synthesis , Antiprotozoal Agents/chemistry , Cell Proliferation/drug effects , Cell Survival/drug effects , Cells, Cultured , Chlorocebus aethiops , Dose-Response Relationship, Drug , Drug Screening Assays, Antitumor , Hep G2 Cells , Humans , Mice , Microbial Sensitivity Tests , Models, Molecular , Molecular Structure , Nitroimidazoles/chemical synthesis , Nitroimidazoles/chemistry , Nitroreductases/antagonists & inhibitors , Nitroreductases/metabolism , RAW 264.7 Cells , Structure-Activity Relationship , Trypanocidal Agents/chemical synthesis , Trypanocidal Agents/chemistry , Trypanosoma cruzi/enzymology
2.
Mater Sci Eng C Mater Biol Appl ; 102: 405-414, 2019 Sep.
Article in English | MEDLINE | ID: mdl-31147011

ABSTRACT

Graphene is one of the crystalline forms of carbon, along with diamond, graphite, carbon nanotubes, and fullerenes, and is considered as a revolutionary and innovating product. The use of a graphene-based nanolabels is one of the latest and most prominent application of graphene, especially in the field of diagnosis and, recently, in loco radiotherapy when coupled with radioisotopes. However, its biological behavior and mutagenicity in different cell or animal models, as well as the in vivo functional activities, are still unrevealed. In this study we have developed by a green route of synthesizing graphene quantum dots (GQDs) and characterized them. We have also developed a methodology for direct radiolabeling of GQDs with radioisotopes.Finally; we have evaluated in vivo biological behavior of GQDs using two different mice models and tested in vitro mutagenicity of GQDs. The results have shown that GQDs were formed with a size range of 160-280 nm, which was confirmed by DRX and Raman spectroscopy analysis, corroborating that the green synthesis is an alternative, environmentally friendly way to produce graphene. The radiolabeling test has shown that stable radiolabeled GQDs can be produced with a high yield (>90%). The in vivo test has demonstrated a ubiquitous behavior when administered to healthy animals, with a high uptake by liver (>26%) and small intestine (>25%). Otherwise, in an inflammation/VEGF hyperexpression animal model (endometriosis), a very peculiar behavior of GQDs was observed, with a high uptake by kidneys (over 85%). The mutagenicity test has demonstrated A:T to G:C substitutions suggesting that GQDs exhibits mutagenic activity.


Subject(s)
Graphite/chemistry , Green Chemistry Technology/methods , Mutagens/toxicity , Quantum Dots/chemistry , Radiopharmaceuticals/chemistry , Technetium/chemistry , Animals , Dynamic Light Scattering , Female , Male , Mice, Inbred BALB C , Neovascularization, Physiologic , Optical Phenomena , Particle Size , Rats, Wistar , Spectrum Analysis, Raman , Tissue Distribution , X-Ray Diffraction
SELECTION OF CITATIONS
SEARCH DETAIL
...