Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
J Chromatogr Sci ; 56(7): 650-655, 2018 Aug 01.
Article in English | MEDLINE | ID: mdl-29912345

ABSTRACT

Microemulsion electrokinetic chromatography (MEEKC) is an electrophoretic methodology based on the separation of compounds by a microemulsionated electrolyte. There are few options for the evaluation of the stability and content of the oral anticoagulant rivaroxaban (RIV) in pharmaceutical formulations. RIV has low water solubility and undergoes ionization only under restricted pH conditions (pH < 1 or pH > 13), thus, hindering the application of free zone capillary electrophoresis as an analytical method. Therefore, the work aimed at developing and validating a stability-indicating MEEKC method for the analysis of RIV in pharmaceutical formulations. Separation was performed in a fused-silica capillary applying a voltage of 30 kV. The microemulsion system consisted of 13 mM tetraborate, pH 9.75 + 1.2% SDS + 1.0% ethyl acetate + 2.4% butanol. The linearity range was 25-150 µg mL-1, with r = 0.9982. Drug degradations were performed in acid and basic media (HCl 1 M and NaOH 0.1 M, respectively), oxidation with 3%H2O2, 60°C temperature and exposure to UV-C radiation. No interferences with RIV or internal standard peaks were detected. Method robustness was accessed through Plackett-Burman experimental design, after evaluation of model validity. Trueness values between 100.49 and 100.68% were obtained with repeatability. The method developed was found appropriate for quality control of RIV tablets, as a consistent analytical technique that is considered less damaging to the environment due to its low consumption of organic reagents.


Subject(s)
Anticoagulants/analysis , Chromatography, Micellar Electrokinetic Capillary/methods , Rivaroxaban/analysis , Drug Stability , Limit of Detection , Linear Models , Reproducibility of Results
2.
Drug Dev Ind Pharm ; 44(5): 723-728, 2018 May.
Article in English | MEDLINE | ID: mdl-29192518

ABSTRACT

OBJECTIVE: This study aimed to develop and validate an in vitro dissolution method based on in silico-in vivo data to determine whether an in vitro-in vivo relationship could be established for rivaroxaban in immediate-release tablets. SIGNIFICANCE: Oral drugs with high permeability but poorly soluble in aqueous media, such as the anticoagulant rivaroxaban, have a major potential to reach a high level of in vitro-in vivo relationship. Currently, there is no study on scientific literature approaching the development of RIV dissolution profile based on its in vivo performance. METHODS AND RESULTS: Drug plasma concentration values were modeled using computer simulation with adjustment of pharmacokinetic properties. Those values were converted into drug fractions absorbed by the Wagner-Nelson deconvolution approach. Gradual and continuous dissolution of RIV tablets was obtained with a 30 rpm basket on 50 mM sodium acetate +0.2% SDS, pH 6.5 medium. Dissolution was conducted for up to 180 min. The fraction absorbed was plotted against the drug fraction dissolved, and a linear point-to-point regression (R2 = 0.9961) obtained. CONCLUSION: The in vitro dissolution method designed promoted a more convenient dissolution profile of RIV tablets, whereas it suggests a better relationship with in vivo performance.


Subject(s)
Rivaroxaban/chemistry , Solubility , Tablets/chemistry , Computer Simulation , In Vitro Techniques , Linear Models , Permeability
3.
J Pharm Biomed Anal ; 123: 10-5, 2016 May 10.
Article in English | MEDLINE | ID: mdl-26855380

ABSTRACT

Drugs of long-term use may cause the accumulation of chemical compounds in human body. Therefore, the evaluation and structure characterization of synthesis and degradation impurities is substantial to guarantee drug safety and successful pharmaceutical therapy. The present work evaluated the anticoagulant rivaroxabana (RIV) under stress conditions in order to elucidate the chemical structure of major degradation products (DPs) formed after drug exposition to acid and alkaline hydrolysis, and UVC radiation. Analyses were performed in UPLC coupled to quadrupole time-of-flight MS. ESI was applied in positive mode, and C18 Agilent(®) column (2.1×50 mm, 1.8 µm) used for separation of compounds. RIV molecular íon [M+H](+) (m/z 436.07) was fragmented under 20 kV, best energetic condition to obtain clear and reproducible fragmentation pattern, assisting identification of RIV DPs. With support from UPLC separation and specific detection by MS/MS, three main degradation products (DP-1, DP-2, and DP-3) formed under stress conditions were successfully characterized. Presented study agrees with requirements for analytical assessment of impurities in pharmaceutical formulations, ensuring quality of pharmaceutical substances.


Subject(s)
Anticoagulants/chemistry , Rivaroxaban/chemistry , Acids/chemistry , Chemistry, Pharmaceutical/methods , Chromatography, High Pressure Liquid/methods , Drug Contamination , Drug Stability , Hydrolysis , Spectrometry, Mass, Electrospray Ionization/methods , Tandem Mass Spectrometry/methods
SELECTION OF CITATIONS
SEARCH DETAIL
...