Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 229
Filter
1.
Proc Natl Acad Sci U S A ; 121(19): e2322424121, 2024 May 07.
Article in English | MEDLINE | ID: mdl-38696465

ABSTRACT

Evolution equations with convolution-type integral operators have a history of study, yet a gap exists in the literature regarding the link between certain convolution kernels and new models, including delayed and fractional differential equations. We demonstrate, starting from the logistic model structure, that classical, delayed, and fractional models are special cases of a framework using a gamma Mittag-Leffler memory kernel. We discuss and classify different types of this general kernel, analyze the asymptotic behavior of the general model, and provide numerical simulations. A detailed classification of the memory kernels is presented through parameter analysis. The fractional models we constructed possess distinctive features as they maintain dimensional balance and explicitly relate fractional orders to past data points. Additionally, we illustrate how our models can reproduce the dynamics of COVID-19 infections in Australia, Brazil, and Peru. Our research expands mathematical modeling by presenting a unified framework that facilitates the incorporation of historical data through the utilization of integro-differential equations, fractional or delayed differential equations, as well as classical systems of ordinary differential equations.

3.
J Hered ; 2024 May 17.
Article in English | MEDLINE | ID: mdl-38757192

ABSTRACT

The underlying processes behind the formation, evolution, and long-term maintenance of multiple sex chromosomes have been largely neglected. Among vertebrates, fishes represent the group with the highest diversity of multiple sex chromosome systems and, with six instances, the Neotropical fish genus Harttia stands out by presenting the most remarkable diversity. However, although the origin mechanism of their sex chromosome systems is well discussed, little is known about the importance of some repetitive DNA classes in the differentiation of multiple systems. In this work, by employing a combination of cytogenetic and genomic procedures, we evaluated the satellite DNA composition of H. carvalhoi with a focus on their role in the evolution, structure, and differentiation process of the rare XY1Y2 multiple sex chromosome system. The genome of H. carvalhoi contains a total of 28 satellite DNA families, with the A+T content ranging between 38,1 and 68,1% and the predominant presence of long satellites. The in situ hybridization experiments detected 15 satellite DNAs with positive hybridization signals mainly on centromeric and pericentromeric regions of almost all chromosomes or clustered on a few pairs. Five of them presented clusters on X, Y1, and/or Y2 sex chromosomes which were therefore selected for comparative hybridization in the other three congeneric species. We found several conserved satellites accumulated on sex chromosomes and also in regions that were involved in chromosomal rearrangements. Our results provide a new contribution of satellitome studies in multiple sex chromosome systems in fishes and represent the first satellitome study for a Siluriformes species.

4.
Odontology ; 2024 Apr 17.
Article in English | MEDLINE | ID: mdl-38630323

ABSTRACT

Peri-implantitis (PI) is a chronic, inflammatory, and infectious disease which affects dental implants and has certain similarities to periodontitis (PD). Evidence has shown that PD may be related to several types of systemic disorders, such as diabetes and insulin resistance, cardiovascular diseases, respiratory tract infections, adverse pregnancy outcomes, and neurological disorders. Furthermore, some types of bacteria in PD can also be found in PI, leading to certain similarities in the immunoinflammatory responses in the host. This review aims to discuss the possible connection between PI and neuroinflammation, using information based on studies about periodontal disorders, a topic whose connection with systemic alterations has been gaining the interest of the scientific community. Literature concerning PI, PD, and systemic disorders, such as neuroinflammation, brain inflammation, and neurological disorder, was searched in the PubMed database using different keyword combinations. All studies found were included in this narrative review. No filters were used. Eligible studies were analyzed and reviewed carefully. This study found similarities between PI and PD development, maintenance, and in the bacterial agents located around the teeth (periodontitis) or dental implants (peri-implantitis). Through the cardiovascular system, these pathologies may also affect blood-brain barrier permeability. Furthermore, scientific evidence has suggested that microorganisms from PI (as in PD) can be recognized by trigeminal fiber endings and start inflammatory responses into the trigeminal ganglion. In addition, bacteria can traverse from the mouth to the brain through the lymphatic system. Consequently, the immune system increases inflammatory mediators in the brain, affecting the homeostasis of the nervous tissue and vice-versa. Based on the interrelation of microbiological, inflammatory, and immunological findings between PD and PI, it is possible to infer that immunoinflammatory changes observed in PD can imply systemic changes in PI. This, as discussed, could lead to the development or intensification of neuroinflammatory changes, contributing to neurodegenerative diseases.

5.
BMC Ecol Evol ; 24(1): 51, 2024 Apr 23.
Article in English | MEDLINE | ID: mdl-38654159

ABSTRACT

BACKGROUND: Different patterns of sex chromosome differentiation are seen in Palaeognathae birds, a lineage that includes the ratites (Struthioniformes, Rheiformes, Apterygiformes, Casuariiformes, and the sister group Tinamiformes). While some Tinamiform species have well-differentiated W chromosomes, both Z and W of all the flightless ratites are still morphologically undifferentiated. Here, we conducted a comprehensive analysis of the ZW differentiation in birds using a combination of cytogenetic, genomic, and bioinformatic approaches. The whole set of satDNAs from the emu (Dromaius novaehollandiae) was described and characterized. Furthermore, we examined the in situ locations of these satDNAs alongside several microsatellite repeats and carried out Comparative Genomic Hybridizations in two related species: the greater rhea (Rhea americana) and the tataupa tinamou (Crypturellus tataupa). RESULTS: From the 24 satDNA families identified (which represent the greatest diversity of satDNAs ever uncovered in any bird species), only three of them were found to accumulate on the emu's sex chromosomes, with no discernible accumulation observed on the W chromosome. The W chromosomes of both the greater rhea and the emu did not exhibit a significant buildup of either C-positive heterochromatin or repetitive DNAs, indicating their large undifferentiation both at morphological and molecular levels. In contrast, the tataupa tinamou has a highly differentiated W chromosome that accumulates several DNA repeats. CONCLUSION: The findings provide new information on the architecture of the avian genome and an inside look at the starting points of sex chromosome differentiation in birds.


Subject(s)
Palaeognathae , Sex Chromosomes , Animals , Sex Chromosomes/genetics , Palaeognathae/genetics , Male , Female , Evolution, Molecular , Microsatellite Repeats/genetics , Biological Evolution , Comparative Genomic Hybridization
7.
Sci Rep ; 14(1): 6749, 2024 03 21.
Article in English | MEDLINE | ID: mdl-38514716

ABSTRACT

The corneal epithelium acts as a barrier to pathogens entering the eye; corneal epithelial cells are continuously renewed by uni-potent, quiescent limbal stem cells (LSCs) located at the limbus, where the cornea transitions to conjunctiva. There has yet to be a consensus on LSC markers and their transcriptome profile is not fully understood, which may be due to using cadaveric tissue without an intact stem cell niche for transcriptomics. In this study, we addressed this problem by using single nuclei RNA sequencing (snRNAseq) on healthy human limbal tissue that was immediately snap-frozen after excision from patients undergoing cataract surgery. We identified the quiescent LSCs as a sub-population of corneal epithelial cells with a low level of total transcript counts. Moreover, TP63, KRT15, CXCL14, and ITGß4 were found to be highly expressed in LSCs and transiently amplifying cells (TACs), which constitute the corneal epithelial progenitor populations at the limbus. The surface markers SLC6A6 and ITGß4 could be used to enrich human corneal epithelial cell progenitors, which were also found to specifically express the putative limbal progenitor cell markers MMP10 and AC093496.1.


Subject(s)
Epithelium, Corneal , Limbus Corneae , Humans , Stem Cell Niche , Limbal Stem Cells , Cornea , Epithelium, Corneal/metabolism , Gene Expression Profiling
8.
Med Image Anal ; 94: 103108, 2024 May.
Article in English | MEDLINE | ID: mdl-38447244

ABSTRACT

Cardiac in silico clinical trials can virtually assess the safety and efficacy of therapies using human-based modelling and simulation. These technologies can provide mechanistic explanations for clinically observed pathological behaviour. Designing virtual cohorts for in silico trials requires exploiting clinical data to capture the physiological variability in the human population. The clinical characterisation of ventricular activation and the Purkinje network is challenging, especially non-invasively. Our study aims to present a novel digital twinning pipeline that can efficiently generate and integrate Purkinje networks into human multiscale biventricular models based on subject-specific clinical 12-lead electrocardiogram and magnetic resonance recordings. Essential novel features of the pipeline are the human-based Purkinje network generation method, personalisation considering ECG R wave progression as well as QRS morphology, and translation from reduced-order Eikonal models to equivalent biophysically-detailed monodomain ones. We demonstrate ECG simulations in line with clinical data with clinical image-based multiscale models with Purkinje in four control subjects and two hypertrophic cardiomyopathy patients (simulated and clinical QRS complexes with Pearson's correlation coefficients > 0.7). Our methods also considered possible differences in the density of Purkinje myocardial junctions in the Eikonal-based inference as regional conduction velocities. These differences translated into regional coupling effects between Purkinje and myocardial models in the monodomain formulation. In summary, we demonstrate a digital twin pipeline enabling simulations yielding clinically consistent ECGs with clinical CMR image-based biventricular multiscale models, including personalised Purkinje in healthy and cardiac disease conditions.


Subject(s)
Magnetic Resonance Imaging , Purkinje Fibers , Humans , Purkinje Fibers/diagnostic imaging , Purkinje Fibers/anatomy & histology , Purkinje Fibers/physiology , Myocardium , Computer Simulation , Electrocardiography/methods
9.
Aliment Pharmacol Ther ; 59(11): 1387-1401, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38501893

ABSTRACT

BACKGROUND: Results of studies evaluating the effect of viral eradication following direct-acting antiviral (DDA) therapy on skeletal muscle mass of patients with chronic hepatitis C (CHC) are scarce. AIM: To assess the components of sarcopenia (low muscle mass, low muscle strength and low physical performance) in a cohort of CHC individuals before and after DAA therapy. METHODS: We performed a longitudinal study of patients with CHC who underwent body composition assessment before (T0), and at 12 (T1) and 48 (T2) weeks after DDA therapy. Bioelectrical Impedance Analysis was used to assess skeletal mass muscle (SM) and phase angle (PhA). SM index (SMI) was calculated by dividing the SM by squared height. Muscle function was evaluated by hand grip strength (HGS) and timed up-and-go (TUG) test. Mixed-effects linear regression models were fitted to SMI, HGS and physical performance and were used to test the effect of HCV eradication by DAA. RESULTS: 62 outpatients (mean age, 58.6 ± 10.8 years; 58% with compensated cirrhosis) were included. Significant decreases in liver fibrosis markers and an increase of 0.20 and 0.22 kg/m2 in the SMI were observed at T1 and T2. Following DAA therapy, an increase of one unit of PhA was associated with a reduction of 0.38 min in TUG. CONCLUSION: HCV eradication with DAA therapy was associated with a dynamic reduction of non-invasive markers of liver fibrosis and increased muscle mass in 62 patients with CHC who had an undetectable HCV load at 12 weeks after completion of antiviral treatment.


Subject(s)
Antiviral Agents , Body Composition , Hepatitis C, Chronic , Muscle, Skeletal , Sarcopenia , Humans , Hepatitis C, Chronic/drug therapy , Antiviral Agents/therapeutic use , Male , Middle Aged , Female , Longitudinal Studies , Muscle, Skeletal/drug effects , Muscle, Skeletal/physiopathology , Aged , Sarcopenia/drug therapy , Body Composition/drug effects , Hand Strength , Muscle Strength/drug effects , Liver Cirrhosis/drug therapy , Liver Cirrhosis/virology
10.
Arterioscler Thromb Vasc Biol ; 44(4): e117-e130, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38385289

ABSTRACT

BACKGROUND: Kawasaki disease (KD) is an acute febrile illness and systemic vasculitis often associated with cardiac sequelae, including arrhythmias. Abundant evidence indicates a central role for IL (interleukin)-1 and TNFα (tumor necrosis factor-alpha) signaling in the formation of arterial lesions in KD. We aimed to investigate the mechanisms underlying the development of electrophysiological abnormalities in a murine model of KD vasculitis. METHODS: Lactobacillus casei cell wall extract-induced KD vasculitis model was used to investigate the therapeutic efficacy of clinically relevant IL-1Ra (IL-1 receptor antagonist) and TNFα neutralization. Echocardiography, in vivo electrophysiology, whole-heart optical mapping, and imaging were performed. RESULTS: KD vasculitis was associated with impaired ejection fraction, increased ventricular tachycardia, prolonged repolarization, and slowed conduction velocity. Since our transcriptomic analysis of human patients showed elevated levels of both IL-1ß and TNFα, we asked whether either cytokine was linked to the development of myocardial dysfunction. Remarkably, only inhibition of IL-1 signaling by IL-1Ra but not TNFα neutralization was able to prevent changes in ejection fraction and arrhythmias, whereas both IL-1Ra and TNFα neutralization significantly improved vasculitis and heart vessel inflammation. The treatment of L casei cell wall extract-injected mice with IL-1Ra also restored conduction velocity and improved the organization of Cx43 (connexin 43) at the intercalated disk. In contrast, in mice with gain of function of the IL-1 signaling pathway, L casei cell wall extract induced spontaneous ventricular tachycardia and premature deaths. CONCLUSIONS: Our results characterize the electrophysiological abnormalities associated with L casei cell wall extract-induced KD and show that IL-1Ra is more effective in preventing KD-induced myocardial dysfunction and arrhythmias than anti-TNFα therapy. These findings support the advancement of clinical trials using IL-1Ra in patients with KD.


Subject(s)
Cardiomyopathies , Mucocutaneous Lymph Node Syndrome , Tachycardia, Ventricular , Vasculitis , Humans , Animals , Mice , Mucocutaneous Lymph Node Syndrome/complications , Mucocutaneous Lymph Node Syndrome/drug therapy , Interleukin 1 Receptor Antagonist Protein/pharmacology , Interleukin 1 Receptor Antagonist Protein/therapeutic use , Tumor Necrosis Factor-alpha , Disease Models, Animal , Interleukin-1beta/metabolism , Arrhythmias, Cardiac/etiology , Arrhythmias, Cardiac/prevention & control , Tachycardia, Ventricular/prevention & control , Tachycardia, Ventricular/complications
11.
Genome ; 67(4): 109-118, 2024 Apr 01.
Article in English | MEDLINE | ID: mdl-38316150

ABSTRACT

Charadriiformes, which comprises shorebirds and their relatives, is one of the most diverse avian orders, with over 390 species showing a wide range of karyotypes. Here, we isolated and characterized the whole collection of satellite DNAs (satDNAs) at both molecular and cytogenetic levels of one of its representative species, named the wattled jacana (Jacana jacana), a species that contains a typical ZZ/ZW sex chromosome system and a highly rearranged karyotype. In addition, we also investigate the in situ location of telomeric and microsatellite repeats. A small catalog of 11 satDNAs was identified that typically accumulated on microchromosomes and on the W chromosome. The latter also showed a significant accumulation of telomeric signals, being (GA)10 the only microsatellite with positive hybridization signals among all the 16 tested ones. These current findings contribute to our understanding of the genomic organization of repetitive DNAs in a bird species with high degree of chromosomal reorganization contrary to the majority of bird species that have stable karyotypes.


Subject(s)
Charadriiformes , Animals , Charadriiformes/genetics , DNA, Satellite/genetics , Heterochromatin/genetics , Repetitive Sequences, Nucleic Acid , Sex Chromosomes/genetics , Karyotype , Birds/genetics , Evolution, Molecular
12.
BMC Biol ; 22(1): 47, 2024 Feb 27.
Article in English | MEDLINE | ID: mdl-38413947

ABSTRACT

BACKGROUND: Crocodilians are one of the oldest extant vertebrate lineages, exhibiting a combination of evolutionary success and morphological resilience that has persisted throughout the history of life on Earth. This ability to endure over such a long geological time span is of great evolutionary importance. Here, we have utilized the combination of genomic and chromosomal data to identify and compare the full catalogs of satellite DNA families (satDNAs, i.e., the satellitomes) of 5 out of the 8 extant Alligatoridae species. As crocodilian genomes reveal ancestral patterns of evolution, by employing this multispecies data collection, we can investigate and assess how satDNA families evolve over time. RESULTS: Alligators and caimans displayed a small number of satDNA families, ranging from 3 to 13 satDNAs in A. sinensis and C. latirostris, respectively. Together with little variation both within and between species it highlighted long-term conservation of satDNA elements throughout evolution. Furthermore, we traced the origin of the ancestral forms of all satDNAs belonging to the common ancestor of Caimaninae and Alligatorinae. Fluorescence in situ experiments showed distinct hybridization patterns for identical orthologous satDNAs, indicating their dynamic genomic placement. CONCLUSIONS: Alligators and caimans possess one of the smallest satDNA libraries ever reported, comprising only four sets of satDNAs that are shared by all species. Besides, our findings indicated limited intraspecific variation in satellite DNA, suggesting that the majority of new satellite sequences likely evolved from pre-existing ones.


Subject(s)
Alligators and Crocodiles , DNA, Satellite , Animals , DNA, Satellite/genetics , Alligators and Crocodiles/genetics , Chromosomes , Genomics , Evolution, Molecular
13.
Genes (Basel) ; 15(2)2024 02 19.
Article in English | MEDLINE | ID: mdl-38397247

ABSTRACT

Vanellus (Charadriidae; Charadriiformes) comprises around 20 species commonly referred to as lapwings. In this study, by integrating cytogenetic and genomic approaches, we assessed the satellite DNA (satDNA) composition of one typical species, Vanellus chilensis, with a highly conserved karyotype. We additionally underlined its role in the evolution, structure, and differentiation process of the present ZW sex chromosome system. Seven distinct satellite DNA families were identified within its genome, accumulating on the centromeres, microchromosomes, and the W chromosome. However, these identified satellite DNA families were not found in two other Charadriiformes members, namely Jacana jacana and Calidris canutus. The hybridization of microsatellite sequences revealed the presence of a few repetitive sequences in V. chilensis, with only two out of sixteen displaying positive hybridization signals. Overall, our results contribute to understanding the genomic organization and satDNA evolution in Charadriiform birds.


Subject(s)
Charadriiformes , Animals , Charadriiformes/genetics , DNA, Satellite/genetics , Birds/genetics , Sex Chromosomes , Repetitive Sequences, Nucleic Acid
15.
Infect Control Hosp Epidemiol ; 45(5): 604-608, 2024 May.
Article in English | MEDLINE | ID: mdl-38204340

ABSTRACT

BACKGROUND: Surveillance of hospital-acquired infections (HAIs) is the foundation of infection control. Machine learning (ML) has been demonstrated to be a valuable tool for HAI surveillance. We compared manual surveillance with a supervised, semiautomated, ML method, and we explored the types of infection and features of importance depicted by the model. METHODS: From July 2021 to December 2021, a semiautomated surveillance method based on the ML random forest algorithm, was implemented in a Brazilian hospital. Inpatient records were independently manually searched by the local team, and a panel of independent experts reviewed the ML semiautomated results for confirmation of HAI. RESULTS: Among 6,296 patients, manual surveillance classified 183 HAI cases (2.9%), and a semiautomated method found 299 HAI cases (4.7%). The semiautomated method added 77 respiratory infections, which comprised 93.9% of the additional HAIs. The ML model considered 447 features for HAI classification. Among them, 148 features (33.1%) were related to infection signs and symptoms; 101 (22.6%) were related to patient severity status, 51 features (11.4%) were related to bacterial laboratory results; 40 features (8.9%) were related to invasive procedures; 34 (7.6%) were related to antibiotic use; and 31 features (6.9%) were related to patient comorbidities. Among these 447 features, 229 (51.2%) were similar to those proposed by NHSN as criteria for HAI classification. CONCLUSION: The ML algorithm, which included most NHSN criteria and >200 features, augmented the human capacity for HAI classification. Well-documented algorithm performances may facilitate the incorporation of AI tools in clinical or epidemiological practice and overcome the drawbacks of traditional HAI surveillance.


Subject(s)
Cross Infection , Humans , Cross Infection/epidemiology , Infection Control/methods , Hospitals , Comorbidity , Algorithms
16.
Clin Nutr ESPEN ; 59: 181-187, 2024 02.
Article in English | MEDLINE | ID: mdl-38220374

ABSTRACT

BACKGROUND AND OBJECTIVE: Lockdown measures implemented amid the COVID-19 pandemic promoted changes in lifestyle, particularly engagement in physical activity/exercise and dietary intake. However, few studies are available investigating the healthy older population, particularly in developing countries. Therefore, the objective of this study was to assess the impact of the COVID-19 pandemic on energy and nutrient intake among older adults with successful aging and to evaluate changes in muscle mass, strength and physical performance. METHODS: A cohort study of 38 healthy older adults from a Brazilian geriatrics referral center were assessed at two time points: baseline - up to 1 year prior to the pandemic; and follow-up - an average of 17 months after the pandemic outbreak. Energy and nutrient intake was determined using food recalls and diary records, while muscle mass was calculated based on anthropometric parameters. Maximum hand-grip strength and Short Physical Performance Battery (SPPB) score were also evaluated. RESULTS: Median age of participants was 87 years. During the pandemic, intake of protein increased from 52.6 g to 63.9 g (p = 0.013) and micronutrients also increased: vitamin C from 35.4 mg to 76.1 mg (p = 0.027), vitamin B12 from 2.2 mg to 3.1 mg (p = 0.045), calcium from 435.1 mg to 631.5 mg (p < 0.001), magnesium from 186.5 mg to 198.9 mg (p = 0.043), zinc from 5.8 mg to 7.6 mg (p = 0.009), iron from 6.9 mg to 7.2 mg (p = 0.035) and potassium from 1941.6 mg to 2115.5 mg (p = 0.048). No changes in energy intake or other nutrients were evident. No difference in mass, strength or physical performance was observed during the study period. Overall, 84% of participants remained physically active, although engagement in physical exercise decreased by 50% (p < 0.002). CONCLUSION: The increase in intake of proteins and micronutrients suggests improved diet quality during the pandemic. Engagement in physical exercise decreased significantly, but level of physical activity was maintained. No change in anthropometric parameters, strength or physical performance was evident in the population investigated.


Subject(s)
COVID-19 , Healthy Aging , Humans , Aged , Aged, 80 and over , Pandemics , Cohort Studies , Communicable Disease Control , Energy Intake , Vitamins , Eating
17.
J Sport Health Sci ; 13(2): 245-255, 2024 Mar.
Article in English | MEDLINE | ID: mdl-37500010

ABSTRACT

BACKGROUND: Exercise training promotes brain plasticity and is associated with protection against cognitive impairment and Alzheimer's disease (AD). These beneficial effects may be partly mediated by blood-borne factors. Here we used an in vitro model of AD to investigate effects of blood plasma from exercise-trained donors on neuronal viability, and an in vivo rat model of AD to test whether such plasma impacts cognitive function, amyloid pathology, and neurogenesis. METHODS: Mouse hippocampal neuronal cells were exposed to AD-like stress using amyloid-ß and treated with plasma collected from human male donors 3 h after a single bout of high-intensity exercise. For in vivo studies, blood was collected from exercise-trained young male Wistar rats (high-intensity intervals 5 days/week for 6 weeks). Transgenic AD rats (McGill-R-Thy1-APP) were injected 5 times/fortnight for 6 weeks at 2 months or 5 months of age with either (a) plasma from the exercise-trained rats, (b) plasma from sedentary rats, or (c) saline. Cognitive function, amyloid plaque pathology, and neurogenesis were assessed. The plasma used for the treatment was analyzed for 23 cytokines. RESULTS: Plasma from exercised donors enhanced cell viability by 44.1% (p = 0.032) and reduced atrophy by 50.0% (p < 0.001) in amyloid-ß-treated cells. In vivo exercised plasma treatment did not alter cognitive function or amyloid plaque pathology but did increase hippocampal neurogenesis by ∼3 fold, regardless of pathological stage, when compared to saline-treated rats. Concentrations of 7 cytokines were significantly reduced in exercised plasma compared to sedentary plasma. CONCLUSION: Our proof-of-concept study demonstrates that plasma from exercise-trained donors can protect neuronal cells in culture and promote adult hippocampal neurogenesis in the AD rat brain. This effect may be partly due to reduced pro-inflammatory signaling molecules in exercised plasma.


Subject(s)
Alzheimer Disease , Rats , Male , Mice , Animals , Humans , Plaque, Amyloid/pathology , Plaque, Amyloid/prevention & control , Rats, Wistar , Hippocampus/pathology , Amyloid beta-Peptides/metabolism , Neurogenesis/physiology , Cytokines , Plasma/metabolism
19.
Int J Mol Sci ; 24(17)2023 Sep 04.
Article in English | MEDLINE | ID: mdl-37686460

ABSTRACT

Chromosomal rearrangements play a significant role in the evolution of fish genomes, being important forces in the rise of multiple sex chromosomes and in speciation events. Repetitive DNAs constitute a major component of the genome and are frequently found in heterochromatic regions, where satellite DNA sequences (satDNAs) usually represent their main components. In this work, we investigated the association of satDNAs with chromosome-shuffling events, as well as their potential relevance in both sex and karyotype evolution, using the well-known Pyrrhulina fish model. Pyrrhulina species have a conserved karyotype dominated by acrocentric chromosomes present in all examined species up to date. However, two species, namely P. marilynae and P. semifasciata, stand out for exhibiting unique traits that distinguish them from others in this group. The first shows a reduced diploid number (with 2n = 32), while the latter has a well-differentiated multiple X1X2Y sex chromosome system. In addition to isolating and characterizing the full collection of satDNAs (satellitomes) of both species, we also in situ mapped these sequences in the chromosomes of both species. Moreover, the satDNAs that displayed signals on the sex chromosomes of P. semifasciata were also mapped in some phylogenetically related species to estimate their potential accumulation on proto-sex chromosomes. Thus, a large collection of satDNAs for both species, with several classes being shared between them, was characterized for the first time. In addition, the possible involvement of these satellites in the karyotype evolution of P. marilynae and P. semifasciata, especially sex-chromosome formation and karyotype reduction in P. marilynae, could be shown.


Subject(s)
Characiformes , Animals , DNA, Satellite/genetics , Sex Chromosomes/genetics , Chromosome Aberrations , Karyotyping
20.
Entropy (Basel) ; 25(8)2023 Aug 18.
Article in English | MEDLINE | ID: mdl-37628259

ABSTRACT

This paper presents a novel hybrid approach for the computational modeling of cardiac perfusion, combining a discrete model of the coronary arterial tree with a continuous porous-media flow model of the myocardium. The constructive constrained optimization (CCO) algorithm captures the detailed topology and geometry of the coronary arterial tree network, while Poiseuille's law governs blood flow within this network. Contrast agent dynamics, crucial for cardiac MRI perfusion assessment, are modeled using reaction-advection-diffusion equations within the porous-media framework. The model incorporates fibrosis-contrast agent interactions and considers contrast agent recirculation to simulate myocardial infarction and Gadolinium-based late-enhancement MRI findings. Numerical experiments simulate various scenarios, including normal perfusion, endocardial ischemia resulting from stenosis, and myocardial infarction. The results demonstrate the model's efficacy in establishing the relationship between blood flow and stenosis in the coronary arterial tree and contrast agent dynamics and perfusion in the myocardial tissue. The hybrid model enables the integration of information from two different exams: computational fractional flow reserve (cFFR) measurements of the heart coronaries obtained from CT scans and heart perfusion and anatomy derived from MRI scans. The cFFR data can be integrated with the discrete arterial tree, while cardiac perfusion MRI data can be incorporated into the continuum part of the model. This integration enhances clinical understanding and treatment strategies for managing cardiovascular disease.

SELECTION OF CITATIONS
SEARCH DETAIL
...