Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 40
Filter
Add more filters










Publication year range
1.
J Toxicol Environ Health A ; 87(16): 662-673, 2024 Aug 17.
Article in English | MEDLINE | ID: mdl-38808737

ABSTRACT

Pseudobombax marginatum, popularly known as "embiratanha," is widely used by traditional communities as anti-inflammatory and analgesic agent. This study aimed to determine the phytochemical profile as well as cytotoxicity, acute oral toxicity, genotoxicity, and mutagenicity attributed to exposure to aqueous (AqEx) and ethanolic (EtEx) extracts of embiratanha bark. Phytochemical screening was conducted using thin-layer chromatography (TLC). Cell viability was analyzed using MTT assay with human mammary gland adenocarcinoma (MDA-MB-231) and macrophage (J774A.1) cell lines, exposed to concentrations of 12.5, 25, 50, or 100 µg/ml of either extract. For acute oral toxicity, comet assay and micronucleus (MN) tests, a single dose of 2,000 mg/kg of either extract was administered orally to Wistar rats. TLC analysis identified classes of metabolites in the extracts, including cinnamic acid derivatives, flavonoids, hydrolyzable tannins, condensed tannins, coumarins, and terpenes/steroids. In the cytotoxicity assay, the varying concentrations of extracts derived from embiratanha induced no significant alterations in the viability of MDA-MB-231 cells. The lowest concentration of EtEx significantly increased macrophage J774A.1 viability. However, the higher concentrations of AqEx markedly lowered macrophage J774A.1 viability. Animals exhibited no toxicity in the parameters analyzed in acute oral toxicity, comet assay, and MN tests. Further, EtEx promoted a significant reduction in DNA damage index and DNA damage frequency utilizing the comet assay, while the group treated with AqEx exhibited no marked differences. Thus, data demonstrated that AqEx or EtEx of embiratanha may be considered safe at a dose of 2,000 mg/kg orgally under our experimental conditions tested.


Subject(s)
Plant Extracts , Rats, Wistar , Plant Extracts/toxicity , Plant Extracts/chemistry , Animals , Humans , Rats , Cell Line, Tumor , Male , Comet Assay , Micronucleus Tests , Female , Cell Survival/drug effects , Phytochemicals/toxicity , Phytochemicals/analysis , Mice , Plant Bark/chemistry , Mutagens/toxicity , Mutagenicity Tests , Ethanol/chemistry
2.
J Toxicol Environ Health A ; 87(12): 497-515, 2024 Jun 17.
Article in English | MEDLINE | ID: mdl-38619158

ABSTRACT

One prominent aspect of Parkinson's disease (PD) is the presence of elevated levels of free radicals, including reactive oxygen species (ROS). Syagrus coronata (S. coronata), a palm tree, exhibits antioxidant activity attributed to its phytochemical composition, containing fatty acids, polyphenols, and flavonoids. The aim of this investigation was to examine the potential neuroprotective effects of S. coronata fixed oil against rotenone-induced toxicity using Drosophila melanogaster. Young Drosophila specimens (3-4 d old) were exposed to a diet supplemented with rotenone (50 µM) for 7 d with and without the inclusion of S. coronata fixed oil (0.2 mg/g diet). Data demonstrated that rotenone exposure resulted in significant locomotor impairment and increased mortality rates in flies. Further, rotenone administration reduced total thiol levels but elevated lipid peroxidation, iron (Fe) levels, and nitric oxide (NO) levels while decreasing the reduced capacity of mitochondria. Concomitant administration of S. coronata exhibited a protective effect against rotenone, as evidenced by a return to control levels of Fe, NO, and total thiols, lowered lipid peroxidation levels, reversed locomotor impairment, and enhanced % cell viability. Molecular docking of the oil lipidic components with antioxidant enzymes showed strong binding affinity to superoxide dismutase (SOD) and glutathione peroxidase (GPX1) enzymes. Overall, treatment with S. coronata fixed oil was found to prevent rotenone-induced movement disorders and oxidative stress in Drosophila melanogaster.


Subject(s)
Movement Disorders , Rotenone , Animals , Drosophila melanogaster , Molecular Docking Simulation , Oxidative Stress , Antioxidants/pharmacology , Nitric Oxide/metabolism
3.
Int J Biol Macromol ; 254(Pt 2): 127715, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37918599

ABSTRACT

Polysaccharides in plant-exuded gums are complex biopolymers consisting of a wide range of structural variability (linkages, monosaccharide composition, substituents, conformation, chain length and branching). The structural features of polysaccharides confer the ability to be exploited in different industrial sectors and applications involving biological systems. Moreover, these characteristics are attributed to a direct relationship in the process of polysaccharide enzymatic degradation by the fermentative action in the gut microbiota, through intrinsic interactions connecting bacterial metabolism and the production of various metabolites that are associated with regulatory effects on the host homeostasis system. Molecular docking analysis between bacterial target proteins and arabinogalactan-type polysaccharide obtained from gum arabic allowed the identification of intermolecular interactions provided bacterial enzymatic mechanism for the degradation of several arabinogalactan monosaccharide chains, as a model for the study and prediction of potential fermentable polysaccharide. This review discusses the main structural characteristics of polysaccharides from exudate gums of plants and their interactions with the intestinal microbiota.


Subject(s)
Gastrointestinal Microbiome , Prebiotics , Molecular Docking Simulation , Polysaccharides/chemistry , Plant Gums/chemistry , Plants/metabolism , Monosaccharides
4.
Inflammopharmacology ; 32(1): 595-602, 2024 Feb.
Article in English | MEDLINE | ID: mdl-37823930

ABSTRACT

Wounds encompass physical, chemical, biological, induced damages to the skin or mucous membranes. In wound treatment, combating infections is a critical challenge due to their potential to impede recovery and inflict systemic harm on patients. Previously, the essential oil extracted from Psidium glaziovianum (PgEO) demonstrated antinociceptive and anti-inflammatory attributes, along with negligible oral toxicity. Hence, our study aimed to assess the effects of topically applying a gel formulation containing PgEO to excisional wounds in mice. Additionally, an in vitro antimicrobial assessment was conducted. The formulated gel underwent characterization and toxicological evaluation on erythrocytes, as well as a dermal irritation test. Its antimicrobial activity was tested against both gram-positive and gram-negative bacteria, as well as fungi. Subsequently, an assessment of its efficacy in excisional wound healing was conducted in mice. The findings of this investigation highlight the gel's efficacy against both gram-positive and gram-negative bacteria, as well as fungi. Moreover, this study underscores that the PgEO-gel treatment enhances skin wound healing, potentially due to its capacity to trigger antioxidant enzymes and suppress pro-inflammatory cytokines. Furthermore, the gel exhibited minimal toxicity to erythrocytes and skin irritation. These findings hold promise for prospective preclinical and clinical trials across diverse wound types. In conclusion, this study sheds light on the potential therapeutic applications of the gel formulation containing essential oil from P. glaziovianum in the context of wound healing.


Subject(s)
Oils, Volatile , Psidium , Humans , Animals , Mice , Anti-Bacterial Agents , Prospective Studies , Gram-Negative Bacteria , Gram-Positive Bacteria , Wound Healing , Oils, Volatile/pharmacology
5.
Parasitol Int ; 98: 102820, 2024 Feb.
Article in English | MEDLINE | ID: mdl-37884077

ABSTRACT

Aedes aegypti, a mosquito, is responsible for the spread of many diseases, including dengue, zika, and chikungunya. However, due to this mosquito's developed resistance to conventional pesticides, effectively controlling it has proven to be challenging. This study aimed to evaluate the insecticidal potential of the essential oil from the leaves of Eugenia stipitata against Ae. aegypti, offering a natural and sustainable alternative for mosquito control. Tests were conducted using third-stage larvae to evaluate larvicidal activity and pupae collected up to 14 h after transformation to investigate pupicidal activity. Throughout the bioassays, the organisms were exposed to various essential oil concentrations. The findings demonstrated that the essential oil of E. stipitata exhibited larvicidal action, resulting in 100% larval mortality after 24 h and an LC50 value of 0.34 mg/mL. The effectiveness of essential oil as a pupicidal agent was also demonstrated by its LC50 value of 2.33 mg/mL and 100% larval mortality in 24 h. It can be concluded that the essential oil of E. stipitata holds promise as a natural pest control agent. Its use may reduce the reliance on conventional chemical pesticides, providing a more sustainable and effective strategy to combat diseases spread by mosquitoes.


Subject(s)
Aedes , Insecticides , Oils, Volatile , Zika Virus Infection , Zika Virus , Animals , Insecticides/pharmacology , Oils, Volatile/pharmacology , Oils, Volatile/chemistry , Plant Leaves/chemistry , Larva , Plant Extracts/chemistry
6.
Inflammopharmacology ; 31(6): 3143-3151, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37498376

ABSTRACT

Myrciaria floribunda is a plant that is distributed across different Brazilian biomes such as the Amazon, Caatinga, Cerrado, and Atlantic Forest, and it possesses antioxidant, antimicrobial, and anticancer properties. The antinociceptive and anti-inflammatory properties of the essential oil from M. floribunda leaves (MfEO) were examined in this study using mouse models. Gas chromatography-mass spectrometry was employed to describe the oil, and the results revealed that δ-cadinene, bicyclogermacrene, α-cadinol, and epi-α-muurolol predominated in the chemical profile. The oil stimulated a decrease in nociception in the chemical and thermal models used to evaluate acute antinociceptive activity. Findings from the use of pain pathway blockers to study the presumed underlying mechanism indicated opioid pathway activity. The anti-edematogenic effect, decreased cell migration, and generation of pro-inflammatory cytokines provided evidence of the anti-inflammatory potential of the essential oil from M. floribunda. According to this research, the essential oil from M. floribunda can effectively alleviate acute pain and inflammation.


Subject(s)
Anti-Infective Agents , Oils, Volatile , Mice , Animals , Oils, Volatile/pharmacology , Anti-Inflammatory Agents/pharmacology , Anti-Inflammatory Agents/chemistry , Antioxidants/pharmacology , Anti-Infective Agents/pharmacology , Plant Extracts/chemistry , Analgesics/pharmacology , Analgesics/chemistry , Plant Leaves/chemistry
7.
J Toxicol Environ Health A ; 86(16): 557-574, 2023 08 18.
Article in English | MEDLINE | ID: mdl-37350297

ABSTRACT

This study aimed to characterize the phytochemical profile of bark and leaves aqueous extract Commiphora leptophloeos, and conduct in vivo and in vitro assays to determine the presence of any toxicological consequences due to exposure. The phytochemical analysis was carried out using high-performance liquid chromatography (HPLC). The antioxidant activity was estimated utilizing DPPH free radical scavenging and phosphomolybdenum assays. Cell viability was measured by the MTT method on J774 and human adenocarcinoma cells, which were treated with concentrations of 12,5, 25, 50, 100 or 200 µg/ml of both extracts. Acute oral toxicity, genotoxicity, and mutagenicity assays were determined using a single oral dose of 2000 g/kg in male Swiss albino mice (Mus musculus). Biochemical analysis of the blood and histological analyses of the kidneys, liver, spleen, pylorus, duodenum and jejunum were undertaken. Genotoxicity and mutagenicity were determined utilizing blood samples. Gallic acid, catechin, and epicatechin were identified in the bark and chlorogenic acid in leaves. Data demonstrated a high content of phenolic compounds and flavonoids associated with significant antioxidant potential. No significant signs in damage or symptoms of toxicity were detected. No marked reduction in cell viability was found at lower concentrations tested. On histomorphometry, only the gastrointestinal organs exhibited significant difference. Renal hepatic and blood parameters were within the normal range. No apparent signs of toxicity, genotoxicity, mutagenicity or cytotoxicity were found in vivo and in vitro experiments.


Subject(s)
Antioxidants , Catechin , Mice , Animals , Male , Humans , Antioxidants/chemistry , Plant Extracts/toxicity , Plant Extracts/chemistry , Commiphora , Plant Bark/chemistry , Phytochemicals/toxicity , Plant Leaves/chemistry
8.
Nat Prod Res ; 37(6): 1042-1046, 2023 Mar.
Article in English | MEDLINE | ID: mdl-35848393

ABSTRACT

The current trichomoniasis treatment is restrict to 5-nitroimidazole drugs and the emergence of resistant isolates points the need for new therapeutical alternatives. In this study the anti-Trichomonas vaginalis activity of essential oils obtained from Myrtaceae occurring in Caatinga, a plant family with potential antiparasitic activity, was showed. The essential oils varied in their capacity to kill ATCC and fresh clinical T. vaginalis isolates, which was associated with heterogeneity and different patterns of endosymbiosis. Essential oils caused moderate to strong cytotoxicity against mammalian cells, but essential oil of Eugenia pohliana (EOEp) exhibited promising selectivity index towards vaginal epithelial cells. A checkerboard assay revealed a synergistic effect when EOEp and metronidazole were associated, indicating different mechanisms of action. The GC/MS analysis demonstrated the volatile composition of EOEp, with δ-cadinene as majoritary component. This molecule seems to contribute to the trichomonacidal effect and shows potential for the prospection of new antiparasitic compounds.


Subject(s)
Eugenia , Myrtaceae , Oils, Volatile , Trichomonas vaginalis , Animals , Female , Oils, Volatile/chemistry , Antiparasitic Agents/pharmacology , Metronidazole/pharmacology , Mammals
9.
J Ethnopharmacol ; 303: 115955, 2023 Mar 01.
Article in English | MEDLINE | ID: mdl-36436714

ABSTRACT

ETHNOPHARMACOLOGICAL RELEVANCE: Members of the Psidium genus have been suggested in ethnobotanical research for the treatment of various human diseases, and some studies have already proven their popular uses through research, such as Psidium glaziovianum, which is found in Brazil's northeast and southeast regions and has antinociceptive and anti-inflammatory properties; however, the safety of use has not yet been evaluated. AIM OF THE STUDY: This study investigated the safety of using essential oil obtained from P. glaziovianum leaves (PgEO) in vitro and in vivo models. MATERIALS AND METHODS: Cytotoxicity was evaluated in murine erythrocytes, while acute toxicity, genotoxicity (comet assay) and mutagenicity (micronucleus test) studies were performed using Swiss albino mice. RESULTS: In the cytotoxicity assay, the hemolysis rate indicated a low capacity of PgEO to cause cell lysis (0.33-1.78%). In the acute oral toxicity study, animals treated with up to up to 5000 mg/kg body weight did not observe mortality or physiological changes. Neither dosage caused behavioral problems or death in mice over 14 days. The control and 2,000 mg/kg groups had higher feed intake and body weight than the 5,000 mg/kg PgEO group. Erythrocyte count, hemoglobin level, mean corpuscular volume, and MCV decreased, but serum alanine and aspartate aminotransferases increased. In the genotoxic evaluation, 5000 mg/kg PgEO enhanced nucleated blood cell DI and DF. CONCLUSIONS: The present study describes that PgEO can be considered well tolerated in acute exposure at doses up to 2000 mg/kg, however the dose of 5000 mg/kg of PgEO should be used with caution.


Subject(s)
Oils, Volatile , Psidium , Mice , Humans , Animals , Oils, Volatile/pharmacology , Mutagens , DNA Damage , Comet Assay , Plant Extracts/pharmacology , Mutagenicity Tests
10.
Chem Biodivers ; 19(12): e202200515, 2022 Dec.
Article in English | MEDLINE | ID: mdl-36250754

ABSTRACT

Biosensors are small devices known for their selectivity, high specificity and sensitivity to the respective analyte, at low concentrations. We developed an electrochemical biosensor using the crystalline polymer MOF-[Cu3 (BTC)2 (H2 O)2 ]n to characterize Cratylia mollis seed lectin (Cramoll) and its interaction with free carbohydrate (glucose) and carbohydrates on the surface of rabbit erythrocytes. The electrochemical potentials presented by the exponential curves that vary from 96 to 142 mV in relation to concentrations of 10 to 20 mM of glucose are decisive for the use of the system containing gold electrode/MOF/Cramoll for the characterization of biological models due to its high sensitivity. As well as the kinetic behavior presented in the cyclic voltammograms, with a cathodic current response of 0.000 3 A for a glucose concentration of 15 mM. These results were due to the high specificity of Cramoll under these conditions, promoting stability of surface charges at the Cramoll/electrode interface. This phenomenon facilitates the monitoring of the interaction with free glucose present in the electrolyte medium by potentiometric and amperometric methods and with carbohydrates present on the surface of rabbit erythrocytes through the potentiometric method. Through scanning electron microscopy (SEM) it was possible to observe Cramoll immobilized on the MOF surface, proving the specificity of the ligand (glucose-lectin) through the morphological lectin changes in this process. This electrochemical model, Cramoll/MOF biosensor, is effective for evaluating free lectin/carbohydrate or in the erythrocyte membrane.


Subject(s)
Biosensing Techniques , Fabaceae , Animals , Rabbits , Carbohydrates/analysis , Carbohydrates/chemistry , Fabaceae/chemistry , Glucose , Lectins/chemistry , Seeds/chemistry
11.
Chem Biodivers ; 19(9): e202200034, 2022 Sep.
Article in English | MEDLINE | ID: mdl-35864035

ABSTRACT

The purpose of this study was to analyses the influence of seasonal variation on the chemical composition and antimicrobial, antioxidant and cytotoxicity activities of the essential oil (EO) extracted from the leaves of Eugenia pohliana. Chemical characterization of the samples - by gas chromatography-mass spectrometry - found 35 and 38 components for summer and winter, respectively, of the EO from E. pohliana leaves, totaling 47 different compounds. Analysis of antioxidant capacity (DPPH, ABTS and TAC) revealed that the summer EO showed greater free radical scavenging capacity than the winter. Similarly, the summer EO exhibited superior antimicrobial potential (MIC=128-512 µg/mL and MMC=128-1024 µg/mL, compared to the winter EO (128-2048 µg/mL and 256-2048 µg/mL, respectively). Results showed that both oils had a low potential to cause hemolysis. This study provides new scientific evidence on the influence of seasonality on the pharmacological properties of E. pohliana leaves and its potential for the development of herbal medicines.


Subject(s)
Anti-Infective Agents , Eugenia , Oils, Volatile , Anti-Bacterial Agents/pharmacology , Anti-Infective Agents/pharmacology , Antioxidants/chemistry , Free Radicals , Microbial Sensitivity Tests , Oils, Volatile/chemistry , Plant Leaves/chemistry , Seasons
12.
Inflammopharmacology ; 30(2): 599-607, 2022 Apr.
Article in English | MEDLINE | ID: mdl-35257283

ABSTRACT

Plants of the genus Psidium have been employed in "in natura" consumption and agroindustry, and owing to the diversity of phytochemicals, the development of new pharmaceutical forms has received remarkable research interest. In this study, the essential oil obtained from Psidium glaziovianum (PgEO) leaves were evaluated antinociceptive and anti-inflammatory activities were evaluated in mouse models. Initially, PgEO was characterized by gas chromatography-mass spectrometry and gas chromatography with flame ionization detection, and the profile was dominated by sesquiterpene compounds. In the evaluation of acute antinociceptive activity (abdominal contortions induced by acetic acid, formalin, tail immersion, and hot plate tests), PgEO promoted a reduction in nociception in the chemical and thermal models. Additionally, the potential underlying mechanism was investigated using pain pathway blockers, and the results revealed a combined action of opioidergic and muscarinic pathways. The anti-inflammatory potential was confirmed by anti-edematogenic action, reduced cell migration, pro-inflammatory cytokine production, and granuloma formation in chronic processes. This study provides evidence that PgEO can be effective for the treatment of pain and acute and chronic inflammation.


Subject(s)
Oils, Volatile , Psidium , Administration, Oral , Analgesics , Animals , Edema/chemically induced , Edema/drug therapy , Inflammation/drug therapy , Mice , Oils, Volatile/pharmacology , Pain/drug therapy , Plant Extracts , Plant Leaves/chemistry , Psidium/chemistry
13.
J Biomol Struct Dyn ; 40(23): 13001-13016, 2022.
Article in English | MEDLINE | ID: mdl-34632943

ABSTRACT

Cutaneous Leishmaniasis (CL) is a neglected disease characterized by highest morbidity rates worldwide. The available treatment for CL has several limitations including serious side effects and resistance to the treatment. Herein we aimed to evaluate the activity of essential oil from the peel of Myrciaria floribunda fruits (MfEO) on Leishmania amazonensis. The cytotoxic potential of MfEO on host mammalian cells was evaluated by MTT. The in vitro leishmanicidal effects of MfEO were investigated on the promastigote and intracellular amastigote forms. The ultrastructural changes induced by MfEO were evaluated by Scanning Electron Microscopy (SEM). The molecular docking of the major compounds δ-Cadinene, γ-Cadinene, γ-Muurolene, α-Selinene, α-Muurolene and (E)-Caryophyllene onto the enzymes trypanothione reductase (TreR) and sterol 14-alpha demethylase (C14DM) were performed. Our results showed that MfEO presented moderate cytotoxicity for Vero cells and macrophages. The MfEO inhibited the growth of promastigote and the survival of intracellular amastigotes, in a dose- and time- dependent way. The MfEO presented high selectivity towards amastigote forms, being 44.1 times more toxic for this form than to macrophages. Molecular docking analysis showed that the major compounds of MfEO interact with Leishmania enzymes and that δ-Cadinene (δ-CAD) presented favorable affinity energy values over TreR and C14DM enzymes, when compared with the other major constituents. Molecular dynamics (MD) simulation studies revealed a stable binding of δ-CAD with lowest binding free energy values in MMGBSA assay. Our results suggested that δ-CAD may be a potent inhibitor of TreR and C14DM enzymes. Communicated by Ramaswamy H. Sarma.


Subject(s)
Antiprotozoal Agents , Leishmania , Oils, Volatile , Animals , Chlorocebus aethiops , Molecular Docking Simulation , Molecular Dynamics Simulation , Oils, Volatile/pharmacology , Oils, Volatile/chemistry , Fruit , Vero Cells , Antiprotozoal Agents/chemistry , Mammals
14.
Nat Prod Res ; 36(4): 1038-1042, 2022 Feb.
Article in English | MEDLINE | ID: mdl-33207966

ABSTRACT

Neglected tropical diseases (NTDs) are a group of pathologies caused by infectious agents or parasites, including the protozoa Leishmania sp. and Trypanosoma cruzi, which cause leishmaniasis and Chagas disease, respectively. The complications of the treatment regimen indicate the urgent need to search for new strategies and therapeutic agents. Among these is the essential oil of Psidium myrsinites DC. The essential oil of the leaves (PMEO) was evaluated in vitro, and cytotoxic activity was analysed against promastigotes of Leishmania braziliensis and Leishmania infantum and epimastigotes of Trypanosoma cruzi, as well as mammalian cells. The results showed that the PMEO had relevant activity against L. braziliensis, low cytotoxicity and a high selectivity index SI = 6.6. These results suggest that PMEO has antiparasitic potential against L. braziliensis, making this species is a possible alternative therapeutic source, given its effectiveness in the in vitro tests performed, opening the possibility of new biological studies in vivo.


Subject(s)
Antiprotozoal Agents , Chagas Disease , Leishmania infantum , Oils, Volatile , Psidium , Trypanocidal Agents , Trypanosoma cruzi , Animals , Antiprotozoal Agents/pharmacology , Chagas Disease/drug therapy , Oils, Volatile/pharmacology , Oils, Volatile/therapeutic use , Trypanocidal Agents/therapeutic use
15.
Carbohydr Polym ; 277: 118824, 2022 Feb 01.
Article in English | MEDLINE | ID: mdl-34893241

ABSTRACT

Polysaccharides are macromolecules with important inherent properties and potential biotechnological applications. These complex carbohydrates exist throughout nature, especially in plants, from which they can be obtained with high yields. Different extraction and purification methods may affect the structure of polysaccharides and, due to the close relationship between structure and function, modify their biological activities. One of the possible applications of these polysaccharides is acting on the skin, which is the largest organ in the human body and can be aged by intrinsic and extrinsic processes. Skincare has been gaining worldwide attention not only to prevent diseases but also to promote rejuvenation in aesthetic treatments. In this review, we discussed the polysaccharides obtained from plants and their innovative potential for skin applications, for example as wound-healing, antimicrobial, antioxidant and anti-inflammatory, antitumoral, and anti-aging compounds.


Subject(s)
Anti-Bacterial Agents/pharmacology , Anti-Inflammatory Agents/pharmacology , Antineoplastic Agents/pharmacology , Antioxidants/pharmacology , Neoplasms/drug therapy , Polysaccharides/pharmacology , Aging/drug effects , Anti-Bacterial Agents/chemistry , Anti-Bacterial Agents/isolation & purification , Anti-Inflammatory Agents/chemistry , Anti-Inflammatory Agents/isolation & purification , Antineoplastic Agents/chemistry , Antineoplastic Agents/isolation & purification , Antioxidants/chemistry , Antioxidants/isolation & purification , Bacteria/drug effects , Humans , Plants, Medicinal/chemistry , Polysaccharides/chemistry , Polysaccharides/isolation & purification , Skin Care , Wound Healing/drug effects
16.
Int J Biol Macromol ; 192: 232-240, 2021 Dec 01.
Article in English | MEDLINE | ID: mdl-34634324

ABSTRACT

This study reports the development of conjugates based on quantum dots (QD)s and lectins from Schinus terebinthifolia leaves (SteLL) and Punica granatum sarcotesta (PgTeL). Cryptococcus neoformans cells were chosen to evaluate the efficiency of the conjugates. Lectins were conjugated to QDs via adsorption, and the optical parameters (emission and absorption) were monitored. Lectin stability in the conjugates towards denaturing agents was investigated via fluorometry. The conjugation was evaluated using fluorescence microplate (FMA) and hemagglutination (HA) assays. The labeling of the C. neoformans cell surface was quantified using flow cytometry and observed via fluorescence microscopy. The QDs-SteLL and QDs-PgTeL conjugates, obtained at pH 7.0 and 8.0, respectively, showed the maintenance of colloidal and optical properties. FMA confirmed the conjugation, and the HA assay indicated that the lectin carbohydrate-binding ability was preserved after conjugation. SteLL and PgTeL showed stability towards high urea concentrations and heating. Conjugates labeled over 90% of C. neoformans cells as observed via flow cytometry and confirmed through fluorescence microscopy. C. neoformans labeling by conjugates was inhibited by glycoproteins, suggesting specific interactions through the lectin carbohydrate-binding site. Thus, an effective protocol for the conjugation of SteLL or PgTeL with QDs was proposed, yielding new nanoprobes useful for glycobiological studies.


Subject(s)
Anacardiaceae/chemistry , Fluorescent Dyes/chemistry , Lectins/chemistry , Pomegranate/chemistry , Quantum Dots/chemistry , Cryptococcus neoformans , Hemagglutination , Microscopy, Fluorescence , Nanoparticles/chemistry , Plant Extracts/chemistry , Plant Leaves/chemistry
17.
Pestic Biochem Physiol ; 177: 104901, 2021 Aug.
Article in English | MEDLINE | ID: mdl-34301362

ABSTRACT

Lippia alba is an aromatic shrub known to produce a diversity of essential oils, which can be classified into chemotypes. This study reports on the insecticidal activity of essential oil from L. alba leaves collected at Caatinga and its major compound against termite Nasutitermes corniger and maize weevil Sitophilus zeamais. The chromatographic analysis revealed the presence of 19 compounds, with 1,8-cineole being the most common (70.01%). When ingested, the oil promoted the mortality of N. corniger (LC50: 18.25 and 8.4 nL/g for workers and soldiers, respectively). The compound 1,8-cineole was also termiticidal for workers (LC50: 13.7 nL/g). The oil inhibited the activity of N. corniger exoglucanase, xylanase, and proteases. Toxicity by ingestion to S. zeamais was detected for the oil (LC50: 0.297 µL/g) but not for 1,8-cineole; however, both the oil and 1,8-cineole showed anti-nutritional effects. Fumigant effects of the oil and 1,8-cineole against S. zeamais (LC50 of 78.0 and 13.64 µL/L in air, respectively) were detected. This is the first record of a chemotype VI oil from L. alba collected at Caatinga and the first report of the insecticidal activity of a chemotype VI oil. Our study demonstrates that essential oil from L. alba and 1,8 cineole have the potential for the development of natural insecticides.


Subject(s)
Insecticides , Isoptera , Lippia , Oils, Volatile , Weevils , Animals , Eucalyptol , Insecticides/pharmacology , Oils, Volatile/pharmacology , Plant Leaves
18.
Int J Biol Macromol ; 168: 676-685, 2021 Jan 31.
Article in English | MEDLINE | ID: mdl-33220373

ABSTRACT

Egletes viscosa is a plant with therapeutic value due to its antibacterial, antinociceptive and gastroprotective properties. This study aimed to purify, characterize, and evaluate the cytotoxicity of a lectin (EgviL) from the floral capitula of E. viscosa. The lectin was isolated from saline extract through precipitation with ammonium sulfate followed by Sephadex G-75 chromatography. The molecular mass and isoelectric point (pI) of EgviL were determined as well as its temperature and pH stability. Physical-chemical parameters of interaction between EgviL and carbohydrates were investigated by fluorescence quenching and 1H nuclear magnetic resonance (NMR). Cytotoxicity was investigated against human peripheral blood mononuclear cells (PBMCs) and neoplastic cells. EgviL (28.8 kDa, pI 5.4) showed hemagglutinating activity stable towards heating until 60 °C and at the pH range 5.0-7.0. This lectin is able to interact through hydrophobic and electrostatic bonds with galactose and glucose, respectively. EgviL reduced the viability of PBMCs only at the highest concentration tested (100 µg/mL) while was toxic to Jurkat E6-1 cells with IC50 of 24.1 µg/mL,inducing apoptosis. In summary, EgviL is a galactose/glucose-binding protein with acidic character, stable to heating and with cytotoxic effect on leukemic cells.


Subject(s)
Antineoplastic Agents, Phytogenic/pharmacology , Asteraceae/chemistry , Leukocytes, Mononuclear/cytology , Plant Lectins/pharmacology , Antineoplastic Agents, Phytogenic/chemistry , Cell Proliferation/drug effects , Cell Survival/drug effects , Chemical Precipitation , Drug Stability , Galactose/metabolism , Glucose/metabolism , Hemagglutination Tests , Humans , Hydrophobic and Hydrophilic Interactions , Inhibitory Concentration 50 , Isoelectric Point , Jurkat Cells , Leukocytes, Mononuclear/drug effects , MCF-7 Cells , Plant Lectins/chemistry
19.
Nat Prod Res ; 35(22): 4828-4832, 2021 Nov.
Article in English | MEDLINE | ID: mdl-32081039

ABSTRACT

This work aimed to investigate the chemical composition, antimicrobial activity, synergistic effect, and structure changes of the essential oil of Hymenaea rubriflora (EOHr). Forty-five constituents were identified in the essential oil, corresponding to 94.43% of the compounds present, being the main components E-Caryophyllene (36.72 ± 1.05%), Germacrene D (16.13 ± 0.31%), α-Humulene (6.06 ± 0.16%), ß-elemene (5.61 ± 0.14%) and δ-Cadinene (3.76 ± 0.07%). Antimicrobial activity was evaluated, presenting antibacterial and antifungal activity with MIC ranging from 0.62 to 40 µL/mL. The essential oil had a synergistic effect when combined with gentamicin and fluconazole. Structural changes were also evaluated and it was possible to observe that EOHr action was related to changes in membrane permeability. The findings obtained here suggest that the use of the essential oil of H. rubriflora in the treatment of infectious diseases presents a potential for the future development of pharmaceutical products.


Subject(s)
Anti-Infective Agents , Fabaceae , Hymenaea , Oils, Volatile , Anti-Bacterial Agents/pharmacology , Anti-Infective Agents/pharmacology , Microbial Sensitivity Tests , Oils, Volatile/pharmacology
20.
Glycobiology ; 31(4): 358-371, 2021 05 03.
Article in English | MEDLINE | ID: mdl-33094324

ABSTRACT

The emergence of a new human coronavirus severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has imposed great pressure on the health system worldwide. The presence of glycoproteins on the viral envelope opens a wide range of possibilities for the application of lectins to address some urgent problems involved in this pandemic. In this work, we discuss the potential contributions of lectins from nonmammalian sources in the development of several fields associated with viral infections, most notably COVID-19. We review the literature on the use of nonmammalian lectins as a therapeutic approach against members of the Coronaviridae family, including recent advances in strategies of protein engineering to improve their efficacy. The applications of lectins as adjuvants for antiviral vaccines are also discussed. Finally, we present some emerging strategies employing lectins for the development of biosensors, microarrays, immunoassays and tools for purification of viruses from whole blood. Altogether, the data compiled in this review highlight the importance of structural studies aiming to improve our knowledge about the basis of glycan recognition by lectins and its repercussions in several fields, providing potential solutions for complex aspects that are emerging from different health challenges.


Subject(s)
Antiviral Agents/pharmacology , COVID-19 Drug Treatment , Carbohydrate Metabolism/drug effects , Lectins/metabolism , Polysaccharides/metabolism , SARS-CoV-2/drug effects , COVID-19/virology , Humans
SELECTION OF CITATIONS
SEARCH DETAIL
...