Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Front Neurosci ; 14: 5, 2020.
Article in English | MEDLINE | ID: mdl-32063826

ABSTRACT

Exposure to environmental tobacco smoke (ETS) is associated with high morbidity and mortality, mainly in childhood. Our aim was to evaluate the effects of postnatal ETS exposure in the brain 2-deoxy-2-[18F]-fluoro-D-glucose (18F-FDG) uptake of mice by positron emission tomography (PET) neuroimaging in a longitudinal study. C57BL/6J mice were exposed to ETS that was generated from 3R4F cigarettes from postnatal day 3 (P3) to P14. PET analyses were performed in male and female mice during infancy (P15), adolescence (P35), and adulthood (P65). We observed that ETS exposure decreased 18F-FDG uptake in the whole brain, both left and right hemispheres, and frontal cortex in both male and female infant mice, while female infant mice exposed to ETS showed decreased 18F-FDG uptake in the cerebellum. In addition, all mice showed reduced 18F-FDG uptake in infancy, compared to adulthood in all analyzed VOIs. In adulthood, ETS exposure during the early postnatal period decreased brain 18F-FDG uptake in adult male mice in the cortex, striatum, hippocampus, cingulate cortex, and thalamus when compared to control group. ETS induced an increase in 18F-FDG uptake in adult female mice when compared to control group in the brainstem and cingulate cortex. Moreover, male ETS-exposed animals showed decreased 18F-FDG uptake when compared to female ETS-exposed in the whole brain, brainstem, cortex, left amygdala, striatum, hippocampus, cingulate cortex, basal forebrain and septum, thalamus, hypothalamus, and midbrain. The present study shows that several brain regions are vulnerable to ETS exposure during the early postnatal period and these effects on 18F-FDG uptake are observed even a long time after the last exposure. This study corroborates our previous findings, strengthening the idea that exposure to tobacco smoke in a critical period interferes with brain development of mice from late infancy to early adulthood.

2.
Crit Care ; 16(5): R199, 2012 Oct 18.
Article in English | MEDLINE | ID: mdl-23078757

ABSTRACT

INTRODUCTION: The regular practice of physical exercise has been associated with beneficial effects on various pulmonary conditions. We investigated the mechanisms involved in the protective effect of exercise in a model of lipopolysaccharide (LPS)-induced acute lung injury (ALI). METHODS: Mice were divided into four groups: Control (CTR), Exercise (Exe), LPS, and Exercise + LPS (Exe + LPS). Exercised mice were trained using low intensity daily exercise for five weeks. LPS and Exe + LPS mice received 200 µg of LPS intratracheally 48 hours after the last physical test. We measured exhaled nitric oxide (eNO); respiratory mechanics; neutrophil density in lung tissue; protein leakage; bronchoalveolar lavage fluid (BALF) cell counts; cytokine levels in BALF, plasma and lung tissue; antioxidant activity in lung tissue; and tissue expression of glucocorticoid receptors (Gre). RESULTS: LPS instillation resulted in increased eNO, neutrophils in BALF and tissue, pulmonary resistance and elastance, protein leakage, TNF-alpha in lung tissue, plasma levels of IL-6 and IL-10, and IL-1beta, IL-6 and KC levels in BALF compared to CTR (P ≤0.02). Aerobic exercise resulted in decreases in eNO levels, neutrophil density and TNF-alpha expression in lung tissue, pulmonary resistance and elastance, and increased the levels of IL-6, IL-10, superoxide dismutase (SOD-2) and Gre in lung tissue and IL-1beta in BALF compared to the LPS group (P ≤0.04). CONCLUSIONS: Aerobic exercise plays important roles in protecting the lungs from the inflammatory effects of LPS-induced ALI. The effects of exercise are mainly mediated by the expression of anti-inflammatory cytokines and antioxidants, suggesting that exercise can modulate the inflammatory-anti-inflammatory and the oxidative-antioxidative balance in the early phase of ALI.


Subject(s)
Acute Lung Injury/prevention & control , Lipopolysaccharides/adverse effects , Physical Conditioning, Animal , Acute Lung Injury/etiology , Animals , Bronchoalveolar Lavage Fluid , Cell Count , Escherichia coli , Interleukins/metabolism , Lung/metabolism , Lung/physiology , Mice, Inbred BALB C , Models, Animal , Neutrophils/metabolism , Nitric Oxide/metabolism , Receptors, Glucocorticoid/metabolism , Superoxide Dismutase/metabolism , Tumor Necrosis Factor-alpha/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...