Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Psychopharmacology (Berl) ; 238(10): 3013-3024, 2021 Oct.
Article in English | MEDLINE | ID: mdl-34312682

ABSTRACT

RATIONALE: Depression is a psychiatric disorder that constitutes one of the leading causes of disability worldwide. 2-Phenyl-3-(phenylselanyl)benzofuran (SeBZF1) has been studied as a potential antidepressant drug, but its pharmacological action needs more investigation. OBJECTIVES AND METHODS: Our aim was to extend information about the antidepressant-like action of SeBZF1 using the mouse tail suspension test (TST). Initial experiments investigated the mechanisms involved in the acute antidepressant-like action of SeBZF1 in male Swiss mice. For this purpose, males received noradrenergic or dopaminergic receptor antagonists before acute SeBZF1 administration (50 mg/kg, per oral). In parallel, effects of combined treatment with SeBZF1 and bupropion at sub-effective doses (1 and 3 mg/kg, respectively) were tested. The next experiments were designed to determine the acute effects of SeBZF1 in females through a dose-response curve (5-50 mg/kg). Lastly, the efficacy of a 7-day repeated treatment with SeBZF1 (1 and 5 mg/kg) in mice of both sexes and its safety were evaluated. TST and the open-field test (OFT) were employed in all behavioral experiments. RESULTS: Pre-administration of dopaminergic antagonists (SCH23390, a selective D1R antagonist; sulpiride, a selective D2/D3R antagonist; and haloperidol, a non-selective antagonist), but not of adrenergic α1, α2, and ß-R antagonists, blocked the acute antidepressant-like effects of SeBZF1 in males. Co-administration of sub-effective doses of SeBZF1 and bupropion reduced the depressive phenotype. In addition, acute treatment with SeBZF1 at 50 mg/kg produced a reduction of female immobility. Finally, repeated treatment with SeBZF1 (1 and 5 mg/kg) was effective in causing antidepressant-like effects in both sexes. Locomotor activity, plasma transaminases, and urea levels remained unaltered after SeBZF1 exposure. CONCLUSION: Our findings provide evidence of the involvement of the dopaminergic system in the acutely antidepressant-like action of SeBZF1 in male mice and reveal the compound efficacy when acute or repeatedly administered in both sexes.


Subject(s)
Antidepressive Agents , Benzofurans , Animals , Antidepressive Agents/pharmacology , Benzofurans/pharmacology , Depression/drug therapy , Dopamine , Dopamine Antagonists , Dose-Response Relationship, Drug , Female , Hindlimb Suspension , Male , Mice , Swimming
2.
Article in English | MEDLINE | ID: mdl-32371105

ABSTRACT

Monoaminergic and oxidative dysfunctions have been reported to play a role in depression. The present study investigated the antioxidant potential as well as the antidepressant-like action of 2-phenyl-3-(phenylselanyl)benzofuran (SeBZF1) in male Swiss mice. Time and dose-response curves were analyzed with the forced swim (FST) and tail suspension (TST) tests, in which SeBZF1 elicited antidepressant-like effects. Serotonergic mechanisms were investigated in the TST. The pre-administration of WAY100635 (selective 5-HT1A receptor antagonist, 0.1 mg/kg, subcutaneous route), ketanserin (5-HT2A/2C receptor antagonist, 1 mg/kg, intraperitoneal route, i.p.), and chlorophenylalaninemethyl ester (p-CPA) (selective tryptophan hydroxylase inhibitor, 100 mg/kg, i.p., for 4 days), but not of ondansetron (selective 5-HT3 receptor antagonist, 1 mg/kg, i.p.), abolished the antidepressant-like action of SeBZF1 (50 mg/kg, intragastric route, i.g.). Co-administration of sub-effective doses of SeBZF1 (1 mg/kg, i.g.) and fluoxetine (5 mg/kg, i.p., selective serotonin reuptake inhibitor) was effective in producing anti-immobility effects in the TST, revealing a synergistic effect. Besides, p-CPA induced hippocampal oxidative stress, characterized by a reduction of total thiols and lipoperoxidation, which was reversed by SeBZF1 (50 mg/kg). The in vitro screening of the antioxidant action of SeBZF1 in brain tissue reinforced these results. Lastly, SeBZF1 did not cause systemic toxicity at a high dose (300 mg/kg). In summary, the present study demonstrated that SeBZF1 exerted antidepressant-like action in male mice which appears to be mediated by the serotonergic system. Moreover, SeBZF1 elicited in vitro antioxidant action in brain tissue, attenuated the hippocampal oxidative damage induced by 5-HT depletion in mice and showed no toxic signs.


Subject(s)
Antidepressive Agents/pharmacology , Antioxidants/pharmacology , Serotonin Agents/pharmacology , Animals , Dose-Response Relationship, Drug , Fluoxetine/pharmacology , Ketanserin/pharmacology , Lipid Peroxidation/drug effects , Male , Mice , Motor Activity , Ondansetron/pharmacology , Piperazines/pharmacology , Pyridines/pharmacology , Serotonin Antagonists/pharmacology
3.
Neurochem Int ; 60(4): 409-14, 2012 Mar.
Article in English | MEDLINE | ID: mdl-22285151

ABSTRACT

The present study was conducted to evaluate the effect of 2-phenylethynyl-butyltellurium (PEBT), an organotellurium compound, at doses of 5 and 10 mg/kg on memory, employing the step-down inhibitory avoidance task in mice. Moreover, the involvement of glutamate uptake and release in cerebral cortex and hippocampus of mice was investigated. A single oral administration (p.o.) of PEBT at the dose of 10 mg/kg 1h before training (acquisition), immediately after training (consolidation) or 1 h before the test session (retrieval) of the step-down inhibitory avoidance task increased the step-through latency time in comparison to the control mice. In the open-field test, no significant differences in the number of crossings and rearings were observed among groups. The [(3)H]glutamate uptake by cerebral cortex and hippocampal slices of mice was significantly inhibited after 1h of treatment with PEBT. After 24h of PEBT exposure, only the hippocampal [(3)H]glutamate uptake was inhibited. The [(3)H]glutamate release by cerebral cortex and hippocampal synaptosomes of mice was not altered. These results suggest that PEBT improved memory stages (acquisition, consolidation and retrieval) in the step-down inhibitory avoidance task in mice. The improvement of memory by PEBT seems most likely to be mediated through an interaction with the amino acid transporters of the glutamatergic system.


Subject(s)
Memory/drug effects , Organometallic Compounds/pharmacology , Administration, Oral , Animals , Avoidance Learning/drug effects , Hippocampus/drug effects , Hippocampus/physiology , Male , Mice , Organometallic Compounds/administration & dosage
SELECTION OF CITATIONS
SEARCH DETAIL
...