Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
PLoS One ; 17(5): e0259034, 2022.
Article in English | MEDLINE | ID: mdl-35604957

ABSTRACT

Severe-intensity constant work rate (CWR) cycling tests simulate the high-intensity competition environment and are useful for monitoring training progression and adaptation, yet impose significant physiological and psychological strain, require substantial recovery, and may disrupt athlete training or competition preparation. A brief, minimally fatiguing test providing comparable information is desirable. Purpose To determine whether physiological variables measured during, and functional decline in maximal power output immediately after, a 2-min CWR test can act as a proxy for 4-min test outcomes. Methods Physiological stress ([Formula: see text] kinetics, heart rate, blood lactate concentrations ([La-]b)) was monitored and performance fatigability was estimated (as pre-to-post-CWR changes in 10-s sprint power) during 2- and 4-min CWR tests in 16 high-level cyclists ([Formula: see text] ml∙kg-1∙min-1). The relationship between the 2- and 4-min CWR tests and the physiological variables that best relate to the performance fatigability were investigated. Results The 2-min CWR test evoked a smaller decline in sprint mechanical power (32% vs. 47%, p<0.001). Both the physiological variables (r = 0.66-0.96) and sprint mechanical power (r = 0.67-0.92) were independently and strongly correlated between 2- and 4-min tests. Differences in [Formula: see text] and [La-]b in both CWR tests were strongly associated with the decline in sprint mechanical power. Conclusion Strong correlations between 2- and 4-min severe-intensity CWR test outcomes indicated that the shorter test can be used as a proxy for the longer test. A shorter test may be more practical within the elite performance environment due to lower physiological stress and performance fatigability and should have less impact on subsequent training and competition preparation.


Subject(s)
Bicycling , Lactic Acid , Adaptation, Physiological , Bicycling/physiology , Fatigue , Heart Rate , Humans , Oxygen Consumption/physiology
2.
J Sports Sci ; 39(1): 84-90, 2021 Jan.
Article in English | MEDLINE | ID: mdl-32787678

ABSTRACT

This study aimed to compare mechanical variables derived from torque-cadence and power-cadence profiles established from different cycle ergometer modes (isoinertial and isokinetic) and modelling procedures (second- and third-order polynomials), whilst employing a novel method to validate the theoretical maximal power output (Pmax). Nineteen well-trained cyclists (n = 12 males) completed two experimental sessions comprising six, 6-s maximal isoinertial or isokinetic cycling sprints. Maximal pedal strokes were extracted to construct power-cadence relationships using second- and third-order polynomials. A 6-s sprint at the optimal cadence (Fopt) or optimal resistance (Topt) was performed to assess construct validity of Pmax. No differences were found in the mechanical parameters when derived from isokinetic (Pmax = 1311 ± 415, Fopt = 118 ± 12) or isoinertial modes (Pmax = 1320 ± 421, Fopt = 116 ± 19). However, R2 improved (P < 0.02) when derived from isoinertial sprints. Third-order polynomial modelling improved goodness of fit values (Standard Error, adjusted R2), but derived similar mechanical parameters. Finally, peak power output during the optimised sprint did not significantly differ from the theoretical Pmax in both cycling modes, thus providing construct validity. The most accurate P-C profile can be derived from isoinertial cycling sprints, modelled using third-order polynomial equations.


Subject(s)
Athletic Performance/physiology , Bicycling/physiology , Biomechanical Phenomena/physiology , Physical Exertion/physiology , Adolescent , Adult , Analysis of Variance , Female , Humans , Male , Models, Theoretical , Torque , Young Adult
3.
J Sports Sci ; 38(10): 1105-1114, 2020 May.
Article in English | MEDLINE | ID: mdl-32202206

ABSTRACT

Prior exercise can negatively affect movement economy of a subsequent task. However, the impact of cycling exercise on the energy cost of subsequent running is difficult to ascertain, possibly because of the use of different methods of calculating economy. We examined the influence of a simulated cycling bout on running physiological cost (running economy, heart rate and ventilation rates) and perceptual responses (ratings of perceived exertion and effort) by comparing two running bouts, performed before and after cycling using different running economy calculation methods. Seventeen competitive male triathletes ran at race pace before and after a simulated Olympic-distance cycling bout. Running economy was calculated as V̇O2 (mL∙kg-1∙min-1), oxygen cost (EO2, mL∙kg-1∙m-1) and aerobic energy cost (Eaer, J∙kg-1∙m-1). All measures of running economy and perceptual responses indicated significant alterations imposed by prior cycling. Despite a good level of agreement with minimal bias between calculation methods, differences (p < 0.05) were observed between Eaer and both V̇O2 and EO2. The results confirmed that prior cycling increased physiological cost and perceptual responses in a subsequent running bout. It is recommended that Eaer be calculated as a more valid measure of running economy alongside perceptual responses to assist in the identification of individual responses in running economy following cycling.


Subject(s)
Bicycling/physiology , Energy Metabolism/physiology , Running/physiology , Adult , Bicycling/psychology , Exercise Test , Heart Rate/physiology , Humans , Male , Oxygen Consumption/physiology , Perception/physiology , Physical Exertion/physiology , Respiratory Rate/physiology , Running/psychology
SELECTION OF CITATIONS
SEARCH DETAIL
...