Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Phys Rev E Stat Nonlin Soft Matter Phys ; 79(6 Pt 2): 066311, 2009 Jun.
Article in English | MEDLINE | ID: mdl-19658598

ABSTRACT

When a drop (or gas bubble) is placed in a strong viscous flow (e.g., a shear flow), it develops very sharp tips at its ends. Sharp tips are also formed when a viscous fluid is withdrawn from the neighborhood of its interface with the ambient air or with another fluid (selective withdrawal). However, it is observed frequently that there exists a critical flow strength above which the drop transitions toward a "jetting state" in which a jet comes out from the tip. In this paper, we look numerically for stationary drop shapes, both globally and close to the tip, which we study with very high resolution. To this end we use a boundary integral method to solve the axisymmetric flow equations for arbitrary viscosity ratios in the inertialess (Stokes) limit. Stationary states are solved for using Newton's method. This permits us to find both stable and unstable steady states and to investigate the nature of the jetting transition. The critical parameters for this transition are in reasonable agreement with slender-body theory. Excellent agreement is found with our earlier experiments in the selective withdrawal geometry [S. Courrech du Pont and J. Eggers, Phys. Rev. Lett. 96, 034501 (2006)], for which the viscosity of the phase inside the tip is negligible. We describe a scale invariance of the experimental interface profiles away from the tip. Then we investigate the highly curved tip region not considered previously with comparable precision. We find that the shape near the tip is universal, i.e., independent of the outer flow and of the geometry of the system (drop or selective withdrawal). While the tip curvature becomes extremely large, it always remains finite if surface tension is present.

2.
Phys Rev E Stat Nonlin Soft Matter Phys ; 74(5 Pt 1): 052101, 2006 Nov.
Article in English | MEDLINE | ID: mdl-17279953

ABSTRACT

We study the formation of knots on a macroscopic ball chain, which is shaken on a horizontal plate at 12 times the acceleration of gravity. We find that above a certain critical length, the knotting probability is independent of chain length, while the time to shake out a knot increases rapidly with chain length. The probability of finding a knot after a certain time is the result of the balance of these two processes. In particular, the knotting probability tends to a constant for long chains.

SELECTION OF CITATIONS
SEARCH DETAIL
...