Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Type of study
Language
Publication year range
1.
Article in English | MEDLINE | ID: mdl-37444054

ABSTRACT

Additive manufacturing (AM) has been linked to potential exposure-related health risks, however, there is a paucity of sufficient research. This study aimed to supply information regarding emissions and exposure during directed energy deposition (DED) AM using inconel 718, with the main constituents being nickel, chromium, and cobalt. By using standardized occupational hygiene methods, the measurement strategy consisted of a combined approach, including powder characterization, particle emission monitoring, and personal exposure monitoring of AM operators. Powder characterization of virgin and used powder indicated no significant difference in particle size, shape, or elemental composition. Particle number emissions ranged between 102 and 105 p/cm3 for submicron particles (<1 µm in size). There was no significant difference in the particle emission rate between the three phases of AM or the two types of DED machines (p > 0.05). The particle emission rate for submicron particles peaked at 2.8 × 109 p/min. Metals of concern to human health were detected during the AM process but were considerably lower than the relevant exposure limits. This study confirms particle emissions, predominantly in the submicron range, above the background concentration during DED AM and, although insignificant in terms of potential health effects, AM operators are exposed to detectable concentrations of the metal constituents of inconel.


Subject(s)
Metals , Occupational Exposure , Humans , Powders , Particle Size , Nickel , Cobalt , Occupational Exposure/analysis
2.
J Chem Health Saf ; 28(3): 190-200, 2021 Mar 25.
Article in English | MEDLINE | ID: mdl-35979329

ABSTRACT

The literature on emissions during material extrusion additive manufacturing with 3-D printers is expanding; however, there is a paucity of data for large-format additive manufacturing (LFAM) machines that can extrude high-melt-temperature polymers. Emissions from two LFAM machines were monitored during extrusion of six polymers: acrylonitrile butadiene styrene (ABS), polycarbonate (PC), high-melt-temperature polysulfone (PSU), poly(ether sulfone) (PESU), polyphenylene sulfide (PPS), and Ultem (poly(ether imide)). Particle number, total volatile organic compound (TVOC), carbon monoxide (CO), and carbon dioxide (CO2) concentrations were monitored in real-time. Particle emission rate values (no./min) were as follows: ABS (1.7 × 1011 to 7.7 × 1013), PC (5.2 × 1011 to 3.6 × 1013), Ultem (5.7 × 1012 to 3.1 × 1013), PPS (4.6 × 1011 to 6.2 × 1012), PSU (1.5 × 1012 to 3.4 × 1013), and PESU (2.0 to 5.0 × 1013). For print jobs where the mass of extruded polymer was known, particle yield values (g-1 extruded) were as follows: ABS (4.5 × 108 to 2.9 × 1011), PC (1.0 × 109 to 1.7 × 1011), PSU (5.1 × 109 to 1.2 × 1011), and PESU (0.8 × 1011 to 1.7 × 1011). TVOC emission yields ranged from 0.005 mg/g extruded (PESU) to 0.7 mg/g extruded (ABS). The use of wall-mounted exhaust ventilation fans was insufficient to completely remove airborne particulate and TVOC from the print room. Real-time CO monitoring was not a useful marker of particulate and TVOC emission profiles for Ultem, PPS, or PSU. Average CO2 and particle concentrations were moderately correlated (r s = 0.76) for PC polymer. Extrusion of ABS, PC, and four high-melt-temperature polymers by LFAM machines released particulate and TVOC at levels that could warrant consideration of engineering controls. LFAM particle emission yields for some polymers were similar to those of common desktop-scale 3-D printers.

3.
J Chem Health Saf ; 28(4): 268-278, 2021 Jul 26.
Article in English | MEDLINE | ID: mdl-36147482

ABSTRACT

Extrusion of high-melt-temperature polymers on large-format additive manufacturing (LFAM) machines releases particles and gases, though there is no data describing their physical and chemical characteristics. Emissions from two LFAM machines were monitored during extrusion of acrylonitrile butadiene styrene (ABS) and polycarbonate (PC) polymers as well as high-melt-temperature Ultem (poly(ether imide)), polysulfone (PSU), poly(ether sulfone) (PESU), and polyphenylene sulfide (PPS) polymers. Filter samples of particles were collected for quantification of elements and bisphenol A and S (BPA, BPS) and visualization of morphology. Individual gases were quantified on substance-specific media. Aerosol sampling demonstrated that concentrations of elements were generally low for all polymers, with a maximum of 1.6 mg/m3 for iron during extrusion of Ultem. BPA, an endocrine disruptor, was released into air during extrusion of PC (range: 0.4 ± 0.1 to 21.3 ± 5.3 µg/m3). BPA and BPS (also an endocrine disruptor) were released into air during extrusion of PESU (BPA, 2.0-8.7 µg/m3; BPS, 0.03-0.07 µg/m3). Work surfaces and printed parts were contaminated with BPA (<8-587 ng/100 cm2) and BPS (<0.22-2.5 ng/100 cm2). Gas-phase sampling quantified low levels of respiratory irritants (phenol, SO2, toluene, xylenes), possible or known asthmagens (caprolactam, methyl methacrylate, 4-oxopentanal, styrene), and possible occupational carcinogens (benzene, formaldehyde, acetaldehyde) in air. Characteristics of particles and gases released by high-melt-temperature polymers during LFAM varied, which indicated the need for polymer-specific exposure and risk assessments. The presence of BPA and BPS on surfaces revealed a previously unrecognized source of dermal exposure for additive manufacturing workers using PC and PESU polymers.

SELECTION OF CITATIONS
SEARCH DETAIL
...