Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Gene ; 871: 147424, 2023 Jun 30.
Article in English | MEDLINE | ID: mdl-37054903

ABSTRACT

Xia-Gibbs syndrome (XGS) is a syndromic form of intellectual disability caused by heterozygous AHDC1 variants, but the pathophysiological mechanisms underlying this syndrome are still unclear. In this manuscript, we describe the development of two different functional models: three induced pluripotent stem cell (iPSC) lines with different loss-of-function (LoF) AHDC1 variants, derived by reprogramming peripheral blood mononuclear cells from XGS patients, and a zebrafish strain with a LoF variant in the ortholog gene (ahdc1) obtained through CRISPR/Cas9-mediated editing. The three iPSC lines showed expression of pluripotency factors (SOX2, SSEA-4, OCT3/4, and NANOG). To verify the capacity of iPSC to differentiate into the three germ layers, we obtained embryoid bodies (EBs), induced their differentiation, and confirmed the mRNA expression of ectodermal, mesodermal, and endodermal markers using the TaqMan hPSC Scorecard. The iPSC lines were also approved for the following quality tests: chromosomal microarray analysis (CMA), mycoplasma testing, and short tandem repeat (STR) DNA profiling. The zebrafish model has an insertion of four base pairs in the ahdc1 gene, is fertile, and breeding between heterozygous and wild-type (WT) animals generated offspring in a genotypic proportion in agreement with Mendelian law. The established iPSC and zebrafish lines were deposited on the hpscreg.eu and zfin.org platforms, respectively. These biological models are the first for XGS and will be used in future studies that investigate the pathophysiology of this syndrome, unraveling its underlying molecular mechanisms.


Subject(s)
Abnormalities, Multiple , Induced Pluripotent Stem Cells , Intellectual Disability , Animals , Intellectual Disability/genetics , Induced Pluripotent Stem Cells/metabolism , Zebrafish/genetics , Leukocytes, Mononuclear , Abnormalities, Multiple/genetics , Cell Differentiation/genetics , Syndrome
2.
Med Oral Patol Oral Cir Bucal ; 18(3): e414-20, 2013 May 01.
Article in English | MEDLINE | ID: mdl-23524414

ABSTRACT

BACKGROUND AND OBJECTIVE: Nonsyndromic cleft lip and/or palate (NSCL/P) is a complex disease associated with both genetic and environmental factors. One strategy for identifying of possible NSCL/P genetic causes is to evaluate polymorphic variants in genes involved in the craniofacial development. DESIGN: We carried out a case-control analysis of 13 single nucleotide polymorphisms in 9 genes related to craniofacial development, including TBX1, PVRL1, MID1, RUNX2, TP63, TGFß3, MSX1, MYH9 and JAG2, in 367 patients with NSCL/P and 413 unaffected controls from Brazil to determine their association with NSCL/P. RESULTS: Four out of 13 polymorphisms (rs28649236 and rs4819522 of TBX1, rs7940667 of PVRL1 and rs1057744 of JAG2) were presented in our population. Comparisons of allele and genotype frequencies revealed that the G variant allele and the AG/GG genotypes of TBX1 rs28649236 occurred in a frequency significantly higher in controls than in the NSCL/P group (OR: 0.41; 95% CI: 0.25-0.67; p=0.0002). The frequencies of rs4819522, rs7940667 and rs1057744 minor alleles and genotypes were similar between control and NSCL/P group, without significant differences. No significant associations among cleft types and polymorphisms were observed. CONCLUSION: The study suggests for the first time evidences to an association of the G allele of TBX1 rs28649236 polymorphism and NSCL/P.


Subject(s)
Cleft Lip/epidemiology , Cleft Lip/genetics , Cleft Palate/epidemiology , Cleft Palate/genetics , Polymorphism, Genetic , Brazil/epidemiology , Case-Control Studies , Genotype , Growth/genetics , Humans , Maxillofacial Development/genetics , Risk , Skull/growth & development
SELECTION OF CITATIONS
SEARCH DETAIL
...