Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Gastroenterology ; 114(4): 764-74, 1998 Apr.
Article in English | MEDLINE | ID: mdl-9516397

ABSTRACT

BACKGROUND & AIMS: 4,4'-Diethylaminoethoxyhexestrol (DEAEH), amiodarone, and perhexiline cause steatohepatitis in humans. The mechanisms of these effects are unknown for DEAEH and have not been completely elucidated for amiodarone and perhexiline. The aim of this study was to determine these mechanisms. METHODS: Rat liver mitochondria, cultured rat hepatocytes, or rats were treated with these drugs, and the effects on mitochondrial respiration, beta-oxidation, reactive oxygen species formation, and lipid peroxidation were determined. RESULTS: DEAEH accumulated in mitochondria and inhibited carnitine palmitoyl transferase I and acyl-coenzyme A dehydrogenases; it decreased beta-oxidation and caused lipid deposits in hepatocytes. DEAEH also inhibited mitochondrial respiration and decreased adenosine triphosphate (ATP) levels in hepatocytes. DEAEH, amiodarone, and perhexiline augmented the mitochondrial formation of reactive oxygen species and caused lipid peroxidation in rats. CONCLUSIONS: Like amiodarone and perhexiline, DEAEH accumulates in mitochondria, where it inhibits both beta-oxidation (causing steatosis) and respiration. Inhibition of respiration decreases ATP and also increases the mitochondrial formation of reactive oxygen species. The latter oxidize fat deposits, causing lipid peroxidation. We suggest that ATP depletion and lipid peroxidation may cause cell death and that lipid peroxidation products may account, in part, for other steatohepatitis lesions.


Subject(s)
Chemical and Drug Induced Liver Injury/etiology , Fatty Liver/chemically induced , Hexestrol/analogs & derivatives , Lipid Peroxidation/drug effects , Mitochondria, Liver/drug effects , Vasodilator Agents/toxicity , Animals , Cells, Cultured , Hexestrol/toxicity , Humans , Male , Membrane Potentials/drug effects , Oxidation-Reduction , Rats , Rats, Sprague-Dawley , Reactive Oxygen Species
2.
Gastroenterology ; 109(5): 1589-99, 1995 Nov.
Article in English | MEDLINE | ID: mdl-7557143

ABSTRACT

BACKGROUND & AIMS: Interleukin (IL) 2 is used in advanced cancers, but its effects on cytochrome P450 remain unknown. Other cytokines down-regulate hepatic cytochrome P450, but it is not known whether this involves cytokine receptors. The aim of this study was to determine whether the IL-2 receptor is expressed on hepatocytes and whether its activation by IL-2 depresses cytochrome P450 in cultured rat hepatocytes. METHODS: A monoclonal antibody specific for the rat IL-2 receptor alpha chain was used to label the receptor, whereas effects on cytochrome P450 were determined after 24 hours of culture with human recombinant IL-2 (5000 U/mL). RESULTS: The presence of the IL-2 receptor in hepatocytes was shown by immunoblots, flow cytometry, and scanning confocal microscopy. IL-2 caused a 46% decrease in total cytochrome P450; a 35%, 35%, 36%, 26%, and 56% decrease in immunoreactive cytochrome P4501A1, 2B, 2C11, 2D1, and 3A, respectively; and a marked decrease in cytochrome P4503A2 and 2C11 messenger RNAs. Addition to the culture medium of the anti-receptor antibody or the tyrosine kinase inhibitor genistein prevented the IL-2-mediated decrease in cytochrome P450. CONCLUSIONS: IL-2 down-regulates the expression of cytochrome P450 genes in cultured rat hepatocytes by interacting with its receptor expressed on hepatocytes.


Subject(s)
Cytochrome P-450 Enzyme System/metabolism , Liver/metabolism , Receptors, Interleukin-2/physiology , Animals , Antibodies, Monoclonal , Base Sequence , Cells, Cultured , Down-Regulation , Flow Cytometry , Genistein , Humans , Immunoblotting , Interleukin-2/genetics , Interleukin-2/physiology , Isoflavones/pharmacology , Liver/cytology , Male , Microscopy, Confocal , Molecular Sequence Data , Protein-Tyrosine Kinases/antagonists & inhibitors , RNA, Messenger/analysis , Rats , Rats, Sprague-Dawley
3.
J Pharmacol Exp Ther ; 268(1): 515-21, 1994 Jan.
Article in English | MEDLINE | ID: mdl-8301593

ABSTRACT

Human recombinant interleukin-2 (IL-2) administration is being tested in patients with advanced cancer. Its effects on the expression of cytochromes P-450 were determined in rats. IL-2 administration (1-25 x 10(6) U/kg i.v. twice daily for 1 to 4 days) resulted in a time- and dose-dependent decrease in cytochrome P-450 measured by the absorbance of its Fe(++)-CO complex. After 25 x 10(6) U/kg twice daily for 4 days, cytochrome P-450 decreased 44%; immunoreactive cytochrome P-450 1A1 decreased nonsignificantly (22%); but cytochrome P-450 1A2 decreased 68%; 2B1/2, 50%; 2C11, 75%; 2D1, 36%; and 3A, 70%. Aminopyrine N-demethylase activity decreased 53%, ethoxycoumarin O-deethylase 64%, benzo(a)pyrene hydroxylase 71%, ethoxyresorufin O-deethylase 42%, pentoxyresorufin O-dealkylase 81% and erythromycin N-demethylase 56%. In rats treated with 3-methylcholanthrene for 4 days, IL-2 coadministration (25 x 10(6) U/kg i.v. twice daily for 4 days) did not decrease significantly immunoreactive cytochrome P-450 1A1 and 1A2, whereas cytochromes P-450 2B1/2, 2C11 and 3A decreased 39, 54 and 67%, respectively. In rats treated with phenobarbital for 4 days, IL-2 coadministration decreased immunoreactive cytochromes P-450 2B1/2 29%, whereas cytochromes P-450 1A2, 2C11 and 3A decreased 38, 63 and 67%, respectively. We conclude that administration of high doses of IL-2 decreases the expression of several cytochromes P-450 in rats. Microsomal enzyme inducers appear to limit the effects of IL-2 on the induced forms of cytochromes P-450. Because much lower doses are used in humans, their potential effects on drug metabolism cannot be assessed from present results.


Subject(s)
Cytochrome P-450 Enzyme System/biosynthesis , Interleukin-2/pharmacology , Isoenzymes/metabolism , Animals , Carbon Monoxide/metabolism , Cytochromes b5/metabolism , Drug Interactions , Humans , Liver/anatomy & histology , Male , Methylcholanthrene/pharmacology , Microsomes, Liver/enzymology , NADPH-Ferrihemoprotein Reductase/metabolism , Organ Size , Phenobarbital/pharmacology , Rats , Rats, Sprague-Dawley , Recombinant Proteins/pharmacology
SELECTION OF CITATIONS
SEARCH DETAIL
...