Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Structure ; 2024 Jun 19.
Article in English | MEDLINE | ID: mdl-38908376

ABSTRACT

The epidermal growth factor receptor (EGFR) is a well-known oncogenic driver in lung and other cancers. In glioblastoma multiforme (GBM), the EGFR deletion variant III (EGFRvIII) is frequently found alongside EGFR amplification. Agents targeting the EGFR axis have shown limited clinical benefits in GBM and the role of EGFRvIII in GBM is poorly understood. To shed light on the role of EGFRvIII and its potential as a therapeutic target, we determined X-ray crystal structures of a monomeric EGFRvIII extracellular region (ECR). The EGFRvIII ECR resembles the unliganded conformation of EGFR, including the orientation of the C-terminal region of domain II. Domain II is mostly disordered, but the ECR structure is compact. We selected a nanobody with preferential binding to EGFRvIII relative to EGFR and structurally defined an epitope on domain IV that is occluded in the unliganded intact EGFR. These findings suggest new avenues for EGFRvIII targeting in GBM.

2.
Small ; 10(4): 734-40, 2014 Feb 26.
Article in English | MEDLINE | ID: mdl-24115738

ABSTRACT

Semiconductor quantum dot nanocrystals (QDs) for optical biosensing applications often contain thick polyethylene glycol (PEG)-based coatings in order to retain the advantageous QD properties in biological media such as blood, serum or plasma. On the other hand, the application of QDs in Förster resonance energy transfer (FRET) immunoassays, one of the most sensitive and most common fluorescence-based techniques for non-competitive homogeneous biomarker diagnostics, is limited by such thick coatings due to the increased donor-acceptor distance. In particular, the combination with large IgG antibodies usually leads to distances well beyond the common FRET range of approximately 1 to 10 nm. Herein, time-gated detection of Tb-to-QD FRET for background suppression and an increased FRET range is combined with single domain antibodies (or nanobodies) for a reduced distance in order to realize highly sensitive QD-based FRET immunoassays. The "(nano)(2) " immunoassay (combination of nanocrystals and nanobodies) is performed on a commercial clinical fluorescence plate reader and provides sub-nanomolar (few ng/mL) detection limits of soluble epidermal growth factor receptor (EGFR) in 50 µL buffer or serum samples. Apart from the first demonstration of using nanobodies for FRET-based immunoassays, the extremely low and clinically relevant detection limits of EGFR demonstrate the direct applicability of the (nano)(2-) assay to fast and sensitive biomarker detection in clinical diagnostics.


Subject(s)
ErbB Receptors/blood , Fluorescence Resonance Energy Transfer/methods , Immunoassay/methods , Nanoparticles/chemistry , Quantum Dots/chemistry , Single-Domain Antibodies/chemistry , Calibration , Humans , Spectrum Analysis
3.
Int J Cancer ; 129(8): 2013-24, 2011 Oct 15.
Article in English | MEDLINE | ID: mdl-21520037

ABSTRACT

The epidermal growth factor receptor (EGFR) has been shown to be a valid cancer target for antibody-based therapy. At present, several anti-EGFR monoclonal antibodies have been successfully used, such as cetuximab and matuzumab. X-ray crystallography data show that these antibodies bind to different epitopes on the ecto-domain of EGFR, providing a rationale for the combined use of these two antibody specificities. We have previously reported on the successful isolation of antagonistic anti-EGFR nanobodies. In our study, we aimed to improve the efficacy of these molecules by combining nanobodies with specificities similar to both cetuximab and matuzumab into a single biparatopic molecule. Carefully designed phage nanobody selections resulted in two sets of nanobodies that specifically blocked the binding of either matuzumab or cetuximab to EGFR and that did not compete for each others' binding. A combination of nanobodies from both epitope groups into the biparatopic nanobody CONAN-1 was shown to block EGFR activation more efficiently than monovalent or bivalent (monospecific) nanobodies. In addition, this biparatopic nanobody potently inhibited EGF-dependent cell proliferation. Importantly, in an in vivo model of athymic mice bearing A431 xenografts, CONAN-1 inhibited tumour outgrowth with an almost similar potency as the whole mAb cetuximab, despite the fact that CONAN-1 is devoid of an Fc portion that could mediate immune effector functions. Compared to therapy using bivalent, monospecific nanobodies, CONAN-1 was clearly more potent in tumour growth inhibition. These results show that the rational design of biparatopic nanobody-based anticancer therapeutics may yield potent lead molecules for further development.


Subject(s)
Antibodies, Monoclonal/pharmacology , Antibody Specificity , Carcinoma, Squamous Cell/therapy , Epitopes , ErbB Receptors/antagonists & inhibitors , ErbB Receptors/immunology , Single-Chain Antibodies/therapeutic use , Animals , Antibodies, Monoclonal/immunology , Antibodies, Monoclonal, Humanized , Antibody Affinity , Cell Line, Tumor , Cetuximab , Humans , Mice , Mice, Nude , Xenograft Model Antitumor Assays
SELECTION OF CITATIONS
SEARCH DETAIL
...