Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 63
Filter
Add more filters










Publication year range
1.
Exp Hematol Oncol ; 12(1): 104, 2023 Dec 10.
Article in English | MEDLINE | ID: mdl-38072918

ABSTRACT

BACKGROUND: Triple-Negative Breast Cancer is particularly aggressive, and its metastasis to the brain has a significant psychological impact on patients' quality of life, in addition to reducing survival. The development of brain metastases is particularly harmful in triple-negative breast cancer (TNBC). To date, the mechanisms that induce brain metastasis in TNBC are poorly understood. METHODS: Using a human blood-brain barrier (BBB) in vitro model, an in vitro 3D organotypic extracellular matrix, an ex vivo mouse brain slices co-culture and in an in vivo xenograft experiment, key step of brain metastasis were recapitulated to study TNBC behaviors. RESULTS: In this study, we demonstrated for the first time the involvement of the precursor of Nerve Growth Factor (proNGF) in the development of brain metastasis. More importantly, our results showed that proNGF acts through TrkA independent of its phosphorylation to induce brain metastasis in TNBC. In addition, we found that proNGF induces BBB transmigration through the TrkA/EphA2 signaling complex. More importantly, our results showed that combinatorial inhibition of TrkA and EphA2 decreased TBNC brain metastasis in a preclinical model. CONCLUSIONS: These disruptive findings provide new insights into the mechanisms underlying brain metastasis with proNGF as a driver of brain metastasis of TNBC and identify TrkA/EphA2 complex as a potential therapeutic target.

2.
Neoplasia ; 46: 100949, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37956532

ABSTRACT

Triple negative breast cancer (TNBC) is an aggressive malignancy for which chemotherapy remains the standard treatment. However, between 3 and 5 years after chemotherapy, about half patients will relapse and it is essential to identify vulnerabilities of cancer cells surviving neoadujuvant therapy. In this study, we established persistent TNBC cell models after treating MDA-MB-231 and SUM159-PT TNBC cell lines with epirubicin and cyclophosphamide, and then with paclitaxel, for a total of 18 weeks. The resulting chemo-persistent cell lines were more proliferative, both in vitro and in xenografted mice. Interestingly, MDA-MB-231 persistent cells became less sensitive to chemotherapeutic drugs, whereas SUM159-PT persistent cells kept similar sensitivity compared to control cells. The reduced sensitivity to chemotherapy in MDA-MB-231 persistent cells was found to be associated with an increased oxidative phosphorylation (OXPHOS) and modified levels of tricarboxylic acid cycle (TCA) intermediates. Integration of data from proteomics and metabolomics demonstrated TCA cycle among the most upregulated pathways in MDA-MB-231 persistent cells. The absence of glucose and pyruvate impeded OXPHOS in persistent cells, while the absence of glutamine did not. In contrast, OXPHOS was not modified in control cells independently of TCA substrates, indicating that MDA-MB-231 persistent cells evolved towards a more pyruvate dependent profile. Finally, the inhibition of pyruvate entry into mitochondria with UK-5099 reduced OXPHOS and re-sensitized persistent cells to therapeutic agents. Together, these findings suggest that targeting mitochondrial pyruvate metabolism may help to overcome mitochondrial adaptation of chemo-persistent TNBC.


Subject(s)
Triple Negative Breast Neoplasms , Humans , Animals , Mice , Triple Negative Breast Neoplasms/pathology , Cell Line, Tumor , Paclitaxel/pharmacology , Mitochondria/metabolism , Pyruvates , Cell Proliferation
3.
Front Oncol ; 13: 661775, 2023.
Article in English | MEDLINE | ID: mdl-37576898

ABSTRACT

Head and Neck Squamous Cell Carcinoma (HNSCC) remains a cancer with a poor prognosis, with a 5-year survival rate of less than 50%. Although epidermal growth factor receptor (EGFR) is almost always overexpressed, targeted anti-EGFR therapies have modest efficacy and are mainly used in palliative care. Growth factors such as Nerve Growth Factor (NGF) and its precursor proNGF have been shown in our laboratory to play a role in tumor growth and aggressiveness. Interestingly, an interaction between Sortilin, a proNGF receptor, and EGFR has been observed. This interaction appears to interfere with the pro-oncogenic signaling of EGF and modulate the membrane expression of EGFR. The aim of this study was to characterize this interaction biologically, to assess its impact on clinical prognosis and to analyze its role in the cellular trafficking of EGFR. Using immunohistochemical staining on tumor sections from patients treated at our university center and PLA (Proximity Ligation Assay) labeling, we showed that Sortilin expression is significantly associated with reduced 5-year survival. However, when Sortilin was associated with EGFR, this association was not found. Using the Cal-27 and Cal-33 cancer cell lines, we observed that proNGF reduces the effects of EGF on cell growth by inducing the internalization of its receptor. These results therefore suggest a regulatory role for Sortilin in the degradation or renewal of EGFR on the membrane. It would be interesting in future work to show the intracellular fate of EGFR and the role of (pro)neurotrophins in these mechanisms.

4.
Int J Mol Sci ; 24(3)2023 Jan 24.
Article in English | MEDLINE | ID: mdl-36768643

ABSTRACT

Polycomb group (PcG) proteins are highly conserved proteins assembled into two major types of complexes, PRC1 and PRC2, involved in the epigenetic silencing of a wide range of gene expression programs regulating cell fate and tissue development. The crucial role of PRC1 and PRC2 in the fundamental cellular processes and their involvement in human pathologies such as cancer attracted intense attention over the last few decades. Here, we review recent advancements regarding PRC1 and PRC2 function using the zebrafish model. We point out that the unique characteristics of the zebrafish model provide an exceptional opportunity to increase our knowledge of the role of the PRC1 and PRC2 complexes in tissue development, in the maintenance of organ integrity and in pathology.


Subject(s)
Drosophila Proteins , Zebrafish , Animals , Humans , Zebrafish/genetics , Zebrafish/metabolism , Polycomb-Group Proteins/genetics , Polycomb-Group Proteins/metabolism , Epigenesis, Genetic , Drosophila Proteins/metabolism , Polycomb Repressive Complex 1/metabolism
5.
Bioinformatics ; 39(1)2023 01 01.
Article in English | MEDLINE | ID: mdl-36629453

ABSTRACT

MOTIVATION: Nowadays, epigenetic gene regulations are studied in each part of the biology, from embryonic development to diseases such as cancers and neurodegenerative disorders. Currently, to quantify and compare CpG methylation levels of a specific region of interest, the most accessible technique is the bisulfite sequencing PCR (BSP). However, no existing user-friendly tool is able to analyze data from all approaches of BSP. Therefore, the most convenient way to process results from the direct sequencing of PCR products (direct-BSP) is to manually analyze the chromatogram traces, which is a repetitive and prone to error task. RESULTS: Here, we implement a new R-based tool, called ABSP for analysis of bisulfite sequencing PCR, providing a complete analytic process of both direct-BSP and cloning-BSP data. It uses the raw sequencing trace files (.ab1) as input to compute and compare CpG methylation percentages. It is fully automated and includes a user-friendly interface as a built-in R shiny app, quality control steps and generates publication-ready graphics. AVAILABILITY AND IMPLEMENTATION: The ABSP tool and associated data are available on GitHub at https://github.com/ABSP-methylation-tool/ABSP. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.


Subject(s)
DNA Methylation , Sulfites , Sequence Analysis, DNA/methods , Polymerase Chain Reaction/methods , Software
6.
Int J Mol Sci ; 23(24)2022 Dec 16.
Article in English | MEDLINE | ID: mdl-36555673

ABSTRACT

Prostate cancer is a major public health concern and one of the most prevalent forms of cancer worldwide. The definition of altered signaling pathways implicated in this complex disease is thus essential. In this context, abnormal expression of the receptor of Macrophage Colony-Stimulating Factor-1 (M-CSF or CSF-1) has been described in prostate cancer cells. Yet, outcomes of this expression remain unknown. Using mouse and human prostate cancer cell lines, this study has investigated the functionality of the wild-type CSF-1 receptor in prostate tumor cells and identified molecular mechanisms underlying its ligand-induced activation. Here, we showed that upon CSF-1 binding, the receptor autophosphorylates and activates multiple signaling pathways in prostate tumor cells. Biological experiments demonstrated that the CSF-1R/CSF-1 axis conferred significant advantages in cell growth and cell invasion in vitro. Mouse xenograft experiments showed that CSF-1R expression promoted the aggressiveness of prostate tumor cells. In particular, we demonstrated that the ligand-activated CSF-1R increased the expression of spp1 transcript encoding for osteopontin, a key player in cancer development and metastasis. Therefore, this study highlights that the CSF-1 receptor is fully functional in a prostate cancer cell and may be a potential therapeutic target for the treatment of prostate cancer.


Subject(s)
Osteopontin , Prostatic Neoplasms , Receptor, Macrophage Colony-Stimulating Factor , Animals , Humans , Male , Mice , Ligands , Macrophage Colony-Stimulating Factor/metabolism , Osteopontin/genetics , Prostatic Neoplasms/metabolism , Receptor, Macrophage Colony-Stimulating Factor/genetics , Receptor, Macrophage Colony-Stimulating Factor/metabolism
7.
J Exp Clin Cancer Res ; 41(1): 110, 2022 Mar 28.
Article in English | MEDLINE | ID: mdl-35346305

ABSTRACT

BACKGROUND: CD44 is a multifunctional membrane glycoprotein. Through its heparan sulfate chain, CD44 presents growth factors to their receptors. We have shown that CD44 and Tropomyosin kinase A (TrkA) form a complex following nerve growth factor (NGF) induction. Our study aimed to understand how CD44 and TrkA interact and the consequences of inhibiting this interaction regarding the pro-tumoral effect of NGF in breast cancer. METHODS: After determining which CD44 isoforms (variants) are involved in forming the TrkA/CD44 complex using proximity ligation assays, we investigated the molecular determinants of this interaction. By molecular modeling, we isolated the amino acids involved and confirmed their involvement using mutations. A CD44v3 mimetic peptide was then synthesized to block the TrkA/CD44v3 interaction. The effects of this peptide on the growth, migration and invasion of xenografted triple-negative breast cancer cells were assessed. Finally, we investigated the correlations between the expression of the TrkA/CD44v3 complex in tumors and histo-pronostic parameters. RESULTS: We demonstrated that isoform v3 (CD44v3), but not v6, binds to TrkA in response to NGF stimulation. The final 10 amino acids of exon v3 and the TrkA H112 residue are necessary for the association of CD44v3 with TrkA. Functionally, the CD44v3 mimetic peptide impairs not only NGF-induced RhoA activation, clonogenicity, and migration/invasion of breast cancer cells in vitro but also tumor growth and metastasis in a xenograft mouse model. We also detected TrkA/CD44v3 only in cancerous cells, not in normal adjacent tissues. CONCLUSION: Collectively, our results suggest that blocking the CD44v3/TrkA interaction can be a new therapeutic option for triple-negative breast cancers.


Subject(s)
Breast Neoplasms , Hyaluronan Receptors , Nerve Growth Factor , Receptor, trkA , Animals , Breast Neoplasms/genetics , Female , Humans , Hyaluronan Receptors/metabolism , Mice , Nerve Growth Factor/pharmacology , Protein Isoforms , Receptor, trkA/metabolism
8.
Cells ; 10(11)2021 11 12.
Article in English | MEDLINE | ID: mdl-34831364

ABSTRACT

Polycomb repressive complex 2 (PRC2) mediates histone H3K27me3 methylation and the stable transcriptional repression of a number of gene expression programs involved in the control of cellular identity during development and differentiation. Here, we report on the generation and on the characterization of a zebrafish line harboring a null allele of eed, a gene coding for an essential component of the PRC2. Homozygous eed-deficient mutants present a normal body plan development but display strong defects at the level of the digestive organs, such as reduced size of the pancreas, hepatic steatosis, and a loss of the intestinal structures, to die finally at around 10-12 days post fertilization. In addition, we found that PRC2 loss of function impairs neuronal differentiation in very specific and discrete areas of the brain and increases larval activity in locomotor assays. Our work highlights that zebrafish is a suited model to study human pathologies associated with PRC2 loss of function and H3K27me3 decrease.


Subject(s)
Digestive System/metabolism , Homeostasis , Neurons/cytology , Polycomb Repressive Complex 2/deficiency , Zebrafish/metabolism , Animals , Animals, Genetically Modified , Behavior, Animal , Cell Differentiation , Gene Expression Regulation, Developmental , Histones/metabolism , Larva/metabolism , Liver/metabolism , Lysine/metabolism , Methylation , Motor Activity , Mutation/genetics , Neurons/metabolism , Organ Specificity , Polycomb Repressive Complex 2/metabolism , Protein Processing, Post-Translational , RNA, Messenger/genetics , RNA, Messenger/metabolism , Transcription Activator-Like Effector Nucleases/metabolism , Zebrafish/embryology , Zebrafish/genetics , Zebrafish Proteins/genetics , Zebrafish Proteins/metabolism
9.
Cancers (Basel) ; 13(21)2021 Nov 05.
Article in English | MEDLINE | ID: mdl-34771714

ABSTRACT

High-grade gliomas represent the most lethal class of pediatric tumors, and their resistance to both radio- and chemotherapy is associated with a poor prognosis. Recurrent mutations affecting histone genes drive the tumorigenesis of some pediatric high-grade gliomas, and H3K27M mutations are notably characteristic of a subtype of gliomas called DMG (Diffuse Midline Gliomas). This dominant negative mutation impairs H3K27 trimethylation, leading to profound epigenetic modifications of genes expression. Even though this mutation was described as a driver event in tumorigenesis, its role in tumor cell resistance to treatments has not been deciphered so far. To tackle this issue, we expressed the H3.3K27M mutated histone in three initially H3K27-unmutated pediatric glioma cell lines, Res259, SF188, and KNS42. First, we validated these new H3.3K27M-expressing models at the molecular level and showed that K27M expression is associated with pleiotropic effects on the transcriptomic signature, largely dependent on cell context. We observed that the mutation triggered an increase in cell growth in Res259 and SF188 cells, associated with higher clonogenic capacities. Interestingly, we evidenced that the mutation confers an increased resistance to ionizing radiations in Res259 and KNS42 cells. Moreover, we showed that H3.3K27M mutation impacts the sensitivity of Res259 cells to specific drugs among a library of 80 anticancerous compounds. Altogether, these data highlight that, beyond its tumorigenic role, H3.3K27M mutation is strongly involved in pediatric glioma cells' resistance to therapies, likely through transcriptomic reprogramming.

10.
Cells ; 10(6)2021 06 15.
Article in English | MEDLINE | ID: mdl-34203746

ABSTRACT

Tremendous data have been accumulated in the effort to understand chemoresistance of triple negative breast cancer (TNBC). However, modifications in cancer cells surviving combined and sequential treatment still remain poorly described. In order to mimic clinical neoadjuvant treatment, we first treated MDA-MB-231 and SUM159-PT TNBC cell lines with epirubicin and cyclophosphamide for 2 days, and then with paclitaxel for another 2 days. After 4 days of recovery, persistent cells surviving the treatment were characterized at both cellular and molecular level. Persistent cells exhibited increased growth and were more invasive in vitro and in zebrafish model. Persistent cells were enriched for vimentinhigh sub-population, vimentin knockdown using siRNA approach decreased the invasive and sphere forming capacities as well as Akt phosphorylation in persistent cells, indicating that vimentin is involved in chemotherapeutic treatment-induced enhancement of TNBC aggressiveness. Interestingly, ectopic vimentin overexpression in native cells increased cell invasion and sphere formation as well as Akt phosphorylation. Furthermore, vimentin overexpression alone rendered the native cells resistant to the drugs, while vimentin knockdown rendered them more sensitive to the drugs. Together, our data suggest that vimentin could be considered as a new targetable player in the ever-elusive status of drug resistance and recurrence of TNBC.


Subject(s)
Drug Resistance, Neoplasm/physiology , Triple Negative Breast Neoplasms/metabolism , Vimentin/physiology , Animals , Cell Line, Tumor , Cell Movement/physiology , Cyclophosphamide/pharmacology , Disease Models, Animal , Drug Therapy/methods , Epirubicin/pharmacology , Epithelial-Mesenchymal Transition , Female , Humans , Neoadjuvant Therapy/methods , Neoplasm Invasiveness/pathology , Neoplasm Recurrence, Local , Paclitaxel/therapeutic use , Triple Negative Breast Neoplasms/pathology , Vimentin/metabolism , Zebrafish
11.
Cancers (Basel) ; 13(8)2021 Apr 09.
Article in English | MEDLINE | ID: mdl-33918823

ABSTRACT

Hypoxia is a hallmark of many solid tumors and is associated with resistance to anticancer treatments. Hypoxia-activated prodrugs (HAPs) were developed to target the hypoxic regions of these tumors. Among 2nd generation HAPs, Evofosfamide (Evo, also known as TH-302) exhibits preclinical and clinical activities against adult glioblastoma. In this study, we evaluated its potential in the field of pediatric neuro-oncology. We assessed the efficacy of Evo in vitro as a single drug, or in combination with SN38, doxorubicin, and etoposide, against three pediatric high-grade glioma (pHGG) and three diffuse intrinsic pontine glioma (DIPG) cell lines under hypoxic conditions. We also investigated radio-sensitizing effects using clonogenic assays. Evo inhibited the growth of all cell lines, mainly under hypoxia. We also highlighted a significant synergism between Evo and doxorubicin, SN38, or etoposide. Finally, Evo radio-sensitized the pHGG cell line tested, both with fractionated and single-dose irradiation schedules. Altogether, we report here the first preclinical proof of evidence about Evofosfamide efficiency against hypoxic pHGG and DIPG cells. Since such tumors are highly hypoxic, and Evo potentiates the effect of ionizing radiation and chemotherapy, it appears as a promising therapeutic strategy for children with brain tumors.

12.
Cells ; 9(12)2020 12 05.
Article in English | MEDLINE | ID: mdl-33291403

ABSTRACT

Cancer stem cells (CSCs) represent a rare population of tumor cells that exhibit stem cell properties with the abilities of self-renewal and differentiation. These cells are now widely accepted to be responsible for tumor initiation, development, resistance to conventional therapies, and recurrence. Thus, a better understanding of the molecular mechanisms involved in the control of CSCs is essential to improve patient management in terms of diagnostics and therapies. CSCs are regulated by signals of the tumor microenvironment as well as intrinsic genetic and epigenetic modulators. H19, the first identified lncRNA is involved in the development and progression of many different cancer types. Recently, H19 has been demonstrated to be implicated in the regulation of CSCs in different types of cancers. The aim of this review is to provide an overview of the role and mechanisms of action of H19 in the regulation of CSCs. We summarize how H19 may regulate CSC division and cancer cell reprogramming, thus affecting metastasis and drug resistance. We also discuss the potential clinical implications of H19.


Subject(s)
Gene Expression Regulation, Neoplastic , Neoplasms/genetics , Neoplastic Stem Cells/cytology , RNA, Long Noncoding/genetics , Alleles , Animals , Apoptosis , Cell Proliferation , Drug Resistance, Neoplasm , Epigenesis, Genetic , Humans , Hypoxia , Mice , Neoplasm Metastasis , Neoplasm Recurrence, Local , Signal Transduction , Tumor Microenvironment
13.
Cancers (Basel) ; 12(8)2020 Aug 04.
Article in English | MEDLINE | ID: mdl-32759814

ABSTRACT

Zebrafish (Danio rerio) is an excellent model to study a wide diversity of human cancers. In this review, we provide an overview of the genetic and reverse genetic toolbox allowing the generation of zebrafish lines that develop tumors. The large spectrum of genetic tools enables the engineering of zebrafish lines harboring precise genetic alterations found in human patients, the generation of zebrafish carrying somatic or germline inheritable mutations or zebrafish showing conditional expression of the oncogenic mutations. Comparative transcriptomics demonstrate that many of the zebrafish tumors share molecular signatures similar to those found in human cancers. Thus, zebrafish cancer models provide a unique in vivo platform to investigate cancer initiation and progression at the molecular and cellular levels, to identify novel genes involved in tumorigenesis as well as to contemplate new therapeutic strategies.

14.
Vet Pathol ; 57(4): 507-519, 2020 07.
Article in English | MEDLINE | ID: mdl-32351171

ABSTRACT

Accumulating data highlight the role of neurotrophins and their receptors in human breast cancer. This family includes nerve growth factor (NGF) and brain-derived neurotrophic factor (BDNF), both synthetized as proneurotrophins (proNGF and proBDNF). (pro)NGF and (pro)BDNF initiate their biological effects by binding to both their specific receptors TrkA and TrkB, respectively, and the common receptor p75NTR. Currently, no data are available about their expression and potential role in canine mammary tumors. The aim of this study was to investigate expression of proNGF and BDNF as well as their receptors TrkA, TrkB, and p75NTR in canine mammary carcinomas, and to correlate them with clinicopathological parameters (grade, histological type, lymph node status, recurrence, and distant metastasis) and survival. Immunohistochemistry was performed on serial sections of 96 canine mammary carcinomas with antibodies against proNGF, BDNF, TrkA, TrkB, and p75NTR. Of the 96 carcinomas, proNGF expression was detected in 71 (74%), BDNF in 79 (82%), TrkA in 94 (98%), TrkB in 35 (37%), and p75NTR in 44 (46%). No association was observed between proNGF, BDNF, or TrkA expression and either clinicopathological parameters or survival. TrkB and p75NTR expression were associated with favorable clinicopathological parameters as well as better overall survival.


Subject(s)
Dog Diseases/pathology , Mammary Neoplasms, Animal , Nerve Growth Factors/metabolism , Animals , Brain-Derived Neurotrophic Factor/metabolism , Dogs , Immunohistochemistry/veterinary , Lymph Nodes/pathology , Mammary Neoplasms, Animal/diagnosis , Mammary Neoplasms, Animal/metabolism , Mammary Neoplasms, Animal/pathology , Neoplasm Grading , Neoplasm Metastasis/pathology , Neoplasm Recurrence, Local/veterinary , Nerve Growth Factor/metabolism , Prognosis , Receptor, Nerve Growth Factor/metabolism , Receptor, trkA/metabolism , Receptor, trkB/metabolism
15.
Genes (Basel) ; 11(4)2020 03 27.
Article in English | MEDLINE | ID: mdl-32230868

ABSTRACT

The Polycomb Repressive Complex 1 (PRC1) is a chromatin-associated protein complex involved in transcriptional repression of hundreds of genes controlling development and differentiation processes, but also involved in cancer and stem cell biology. Within the canonical PRC1, members of Pc/CBX protein family are responsible for the targeting of the complex to specific gene loci. In mammals, the Pc/CBX protein family is composed of five members generating, through mutual exclusion, different PRC1 complexes with potentially distinct cellular functions. Here, we performed a global analysis of the cbx gene family in 68 teleost species and traced the distribution of the cbx genes through teleost evolution in six fish super-orders. We showed that after the teleost-specific whole genome duplication, cbx4, cbx7 and cbx8 are retained as pairs of ohnologues. In contrast, cbx2 and cbx6 are present as pairs of ohnologues in the genome of several teleost clades but as singletons in others. Furthermore, since zebrafish is a widely used vertebrate model for studying development, we report on the expression of the cbx family members during zebrafish development and in adult tissues. We showed that all cbx genes are ubiquitously expressed with some variations during early development.


Subject(s)
Chromatin/metabolism , Fish Proteins/genetics , Fishes/genetics , Gene Duplication , Gene Expression Regulation, Developmental , Polycomb-Group Proteins/genetics , Zebrafish/genetics , Animals , Cell Differentiation , Cell Nucleus/genetics , Cell Nucleus/metabolism , Chromatin/genetics , Fish Proteins/metabolism , Fishes/growth & development , Genome , Polycomb-Group Proteins/metabolism , Zebrafish/growth & development
16.
Bull Cancer ; 107(1): 30-40, 2020 Jan.
Article in French | MEDLINE | ID: mdl-31466696

ABSTRACT

Primarily used in genetic studies of development, the zebrafish (Danio rerio) has rapidly emerged as a promising animal model of human cancer. Cancer cell transplantation in zebrafish constitutes a key platform for clinical research since it allows to study cellular and molecular events involved in various aspects of tumorigenesis and to evaluate the efficacy of therapeutic molecules in vivo. Applied to patient-derived cells, the xenotransplantation approach in zebrafish allows to define the most appropriate therapeutic strategies for specific alterations found in patients in the context of personalized medicine. This review discusses the zebrafish transplantation model for the study of cancer development and drug discovery.


Subject(s)
Neoplasm Transplantation , Neoplasms, Experimental/etiology , Precision Medicine/methods , Translational Research, Biomedical/methods , Zebrafish , Adaptive Immunity , Animals , Animals, Genetically Modified , Cell Transformation, Neoplastic , Disease Models, Animal , Disease Progression , Drug Discovery , Genes, Neoplasm , Heterografts , Humans , Immunosuppression Therapy/methods , Neoplasms, Experimental/genetics , Oncogenes , Xenograft Model Antitumor Assays , Zebrafish/embryology , Zebrafish/genetics , Zebrafish/immunology
17.
Proteomics ; 19(21-22): e1800454, 2019 11.
Article in English | MEDLINE | ID: mdl-31430054

ABSTRACT

Many solid cancers are hierarchically organized with a small number of cancer stem cells (CSCs) able to regrow a tumor, while their progeny lacks this feature. Breast CSC is known to contribute to therapy resistance. The study of those cells is usually based on their cell-surface markers like CD44high /CD24low/neg or their aldehyde dehydrogenase (ALDH) activity. However, these markers cannot be used to track the dynamics of CSC. Here, a transcriptomic analysis is performed to identify segregating gene expression in CSCs and non-CSCs, sorted by Aldefluor assay. It is observed that among ALDH-associated genes, only ALDH1A1 isoform is increased in CSCs. A CSC reporter system is then developed by using a far red-fluorescent protein (mNeptune) under the control of ALDH1A1 promoter. mNeptune-positive cells exhibit higher sphere-forming capacity, tumor formation, and increased resistance to anticancer therapies. These results indicate that the reporter identifies cells with stemness characteristics. Moreover, live tracking of cells in a microfluidic system reveals a higher extravasation potential of CSCs. Live tracking of non-CSCs under irradiation treatment show, for the first time, live reprogramming of non-CSCs into CSCs. Therefore, the reporter will allow for cell tracking to better understand the implication of CSCs in breast cancer development and recurrence.


Subject(s)
Aldehyde Dehydrogenase 1 Family/genetics , Breast Neoplasms/genetics , Cell Tracking , Gene Expression Profiling , Genes, Reporter , Neoplastic Stem Cells/metabolism , Neoplastic Stem Cells/pathology , Retinal Dehydrogenase/genetics , Animals , Antineoplastic Agents/pharmacology , Antineoplastic Agents/therapeutic use , Biomarkers, Tumor/metabolism , Breast Neoplasms/drug therapy , Breast Neoplasms/pathology , Cell Line, Tumor , Cellular Reprogramming/drug effects , Female , Gene Expression Regulation, Neoplastic/drug effects , Genome, Human , Human Umbilical Vein Endothelial Cells/drug effects , Human Umbilical Vein Endothelial Cells/metabolism , Humans , Mice, Inbred NOD , Mice, SCID , Neoplastic Stem Cells/drug effects , Promoter Regions, Genetic/genetics , Reproducibility of Results
18.
Cell Mol Life Sci ; 76(23): 4673-4687, 2019 Dec.
Article in English | MEDLINE | ID: mdl-31338555

ABSTRACT

Cancer cells exhibit hallmarks in terms of proliferation, resistance to cell death, angiogenesis, invasion, metastasis, and genomic instability. Despite the progress in cancer research and the comprehension of tumorigenesis mechanisms, cancer remains a major issue in public health. A better understanding of the molecular factors associated with the appearance or progression of cancer may allow the development of therapeutic alternatives. Increasing data highlight the role of long non-coding RNAs in many diseases, including cancer. The long non-coding RNA H19 was the first discovered riboregulator, and it has been shown to be involved at multiple steps of tumorigenesis. Indeed, this lncRNA exert its action at various molecular scales. Understanding the role of H19 in cancer progression may allow to set up therapeutic strategies to prevent tumor expansion and metastatic dissemination. In this review, we will summarize the overexpression of the long non-coding RNA H19 in several types of cancer and the multiple implications of the long non-coding RNA H19 in the different hallmarks that define human cancer.


Subject(s)
Neoplasms/pathology , RNA, Long Noncoding/metabolism , Apoptosis/genetics , Carcinogenesis/genetics , Epithelial-Mesenchymal Transition , Humans , MicroRNAs/metabolism , Neoplasms/blood supply , Neoplasms/genetics , Neovascularization, Pathologic , RNA Interference , RNA, Long Noncoding/antagonists & inhibitors , RNA, Long Noncoding/genetics , Tumor Suppressor Protein p53/metabolism
19.
Stem Cell Reports ; 13(1): 10-20, 2019 07 09.
Article in English | MEDLINE | ID: mdl-31204299

ABSTRACT

During normal mammary gland development, s-SHIP promoter expression marks a distinct type of mammary stem cells, at two different stages, puberty and early mid-pregnancy. To determine whether s-SHIP is a marker of mammary cancer stem cells (CSCs), we generated bitransgenic mice by crossing the C3(1)-SV40 T-antigen transgenic mouse model of breast cancer, and a transgenic mouse (11.5kb-GFP) expressing green fluorescent protein from the s-SHIP promoter. Here we show that in mammary tumors originating in these bitransgenic mice, s-SHIP promoter expression enriches a rare cell population with CSC activity as demonstrated by sphere-forming assays in vitro and limiting dilution transplantation in vivo. These s-SHIP-positive CSCs are characterized by lower expression of Delta-like non-canonical Notch ligand 1 (DLK1), a negative regulator of the Notch pathway. Inactivation of Dlk1 in s-SHIP-negative tumor cells increases their tumorigenic potential, suggesting a role for DLK1 in mammary cancer stemness.


Subject(s)
Breast Neoplasms/etiology , Breast Neoplasms/metabolism , Gene Expression , Neoplastic Stem Cells/metabolism , Phosphatidylinositol-3,4,5-Trisphosphate 5-Phosphatases/genetics , Promoter Regions, Genetic , Animals , Breast Neoplasms/pathology , Calcium-Binding Proteins/genetics , Calcium-Binding Proteins/metabolism , Cell Self Renewal/genetics , Disease Models, Animal , Female , Gene Expression Profiling , Gene Expression Regulation , Genes, Reporter , Humans , Immunophenotyping , Mammary Glands, Animal/metabolism , Mammary Glands, Animal/pathology , Mice , Mice, Transgenic
20.
Sci Rep ; 9(1): 4319, 2019 03 13.
Article in English | MEDLINE | ID: mdl-30867490

ABSTRACT

Trimethylation on H3K27 mediated by Polycomb Repressive Complex 2 (PRC2) is required to control gene repression programs involved in development, regulation of tissue homeostasis or maintenance and lineage specification of stem cells. In Drosophila, the PRC2 catalytic subunit is the single protein E(z), while in mammals this function is fulfilled by two proteins, Ezh1 and Ezh2. Based on database searches, we propose that Ezh1 arose from an Ezh2 gene duplication that has occurred in the common ancestor to elasmobranchs and bony vertebrates. Expression studies in zebrafish using in situ hybridization and RT-PCR followed by the sequencing of the amplicon revealed that ezh1 mRNAs are maternally deposited. Then, ezh1 transcripts are ubiquitously distributed in the entire embryo at 24 hpf and become more restricted to anterior part of the embryo at later developmental stages. To unveil the function of ezh1 in zebrafish, a mutant line was generated using the TALEN technology. Ezh1-deficient mutant fish are viable and fertile, but the loss of ezh1 function is responsible for the earlier death of ezh2 mutant larvae indicating that ezh1 contributes to zebrafish development in absence of zygotic ezh2 gene function. Furthermore, we show that presence of ezh1 transcripts from the maternal origin accounts for the delayed lethality of ezh2-deficient larvae.


Subject(s)
Enhancer of Zeste Homolog 2 Protein/genetics , Gene Duplication , Polycomb Repressive Complex 2/genetics , Zebrafish Proteins/genetics , Zebrafish/growth & development , Animals , Enhancer of Zeste Homolog 2 Protein/deficiency , Enhancer of Zeste Homolog 2 Protein/physiology , Longevity , Polycomb Repressive Complex 2/deficiency , Polycomb Repressive Complex 2/physiology , Zebrafish/embryology , Zebrafish/genetics , Zebrafish Proteins/physiology
SELECTION OF CITATIONS
SEARCH DETAIL
...