Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 353
Filter
1.
Int Immunopharmacol ; 130: 111778, 2024 Mar 30.
Article in English | MEDLINE | ID: mdl-38432147

ABSTRACT

OBJECTIVE: To investigate the mechanism of action of fatty acid receptors, FFAR1 and FFAR4, on ulcerative colitis (UC) through fatty acid metabolism and macrophage polarization. METHODS: Dextran sulfate sodium (DSS)-induced mouse model of UC mice was used to evaluate the efficacy of FFAR1 (GW9508) and FFAR4 (GSK137647) agonists by analyzing body weight, colon length, disease activity index (DAI), and histological scores. Real-time PCR and immunofluorescence analysis were performed to quantify the levels of fatty acid metabolizing enzymes and macrophage makers. FFA-induced lipid accumulation in RAW264.7 cells was visualized by Oil Red O staining analysis, and cells were collected to detect macrophage polarization by flow cytometry. RESULTS: The combination of GW9508 and GSK137647 significantly improved DSS-induced UC symptoms, caused recovery in colon length, and decreased histological injury. GW9508 + GSK137647 treatment upregulated the expressions of CD206, lipid oxidation enzyme (CPT-1α) and anti-inflammatory cytokines (IL-4, IL-10, IL-13) but downregulated those of CD86, lipogenic enzymes (ACC1, FASN, SCD1), and pro-inflammatory cytokines (IL-1ß, IL-6, TNF-α). Combining the two agonists decreased FFA-induced lipid accumulation and increased CD206 expression in cell-based experiments. CONCLUSION: Activated FFAR1 and FFAR4 ameliorates DSS-induced UC by promoting fatty acid metabolism to reduce lipid accumulation and mediate M2 macrophage polarization.


Subject(s)
Colitis, Ulcerative , Fatty Acids, Nonesterified , Macrophages , Receptors, G-Protein-Coupled , Animals , Mice , Aniline Compounds/pharmacology , Aniline Compounds/therapeutic use , Colitis, Ulcerative/chemically induced , Colitis, Ulcerative/drug therapy , Colon/pathology , Cytokines/metabolism , Dextran Sulfate , Disease Models, Animal , Fatty Acids, Nonesterified/metabolism , Macrophages/drug effects , Macrophages/metabolism , Methylamines/pharmacology , Methylamines/therapeutic use , Mice, Inbred C57BL , Propionates/pharmacology , Propionates/therapeutic use , Sulfonamides/pharmacology , Sulfonamides/therapeutic use , Receptors, G-Protein-Coupled/agonists
2.
3.
Eur J Med Res ; 28(1): 482, 2023 Nov 06.
Article in English | MEDLINE | ID: mdl-37932817

ABSTRACT

BACKGROUND: Dengue virus serotype 2 (DENV-2) was the major serotype in the 2015 dengue outbreak in Taiwan, while DENV-1 and DENV-3 were dominant between 2005 and 2014. We aimed to investigate whether DENV-2 contributed to disease severity and mortality in the outbreak in Kaohsiung city, Taiwan. METHODS: We collected serum samples from dengue patients to detect the presence of DENV and determine the serotypes by using quantitative reverse transcription-polymerase chain reaction. Our cohorts comprised 105 DENV-1-infected cases and 1,550 DENV-2-infected cases. Demographic data, DENV serotype, and comorbidities were covariates for univariate and multivariate analyses to explore the association with severity and mortality. RESULTS: The results suggested that DENV-1 persisted and circulated, while DENV-2 was dominant during the dengue outbreak that occurred between September and December 2015. However, DENV-2 did not directly contribute to either severity or mortality. Aged patients and patients with diabetes mellitus (DM) or moderate to severe chronic kidney disease (CKD) had a higher risk of developing severe dengue. The mortality of dengue patients was related to a higher Charlson comorbidity index score and severe dengue. Among DENV-2-infected patients and older patients, preexisting anti-dengue IgG, DM, and moderate to severe CKD were associated with severe dengue. Moreover, female sex and severe dengue were associated with a significantly higher risk of death. CONCLUSIONS: Our findings highlight the importance of timely serological testing in elderly patients to identify potential secondary infections and focus on the meticulous management of elderly patients with DM or moderate to severe CKD to reduce dengue-related death.


Subject(s)
Dengue Virus , Dengue , Renal Insufficiency, Chronic , Severe Dengue , Aged , Humans , Female , Serogroup , Dengue/diagnosis , Dengue/epidemiology , Severe Dengue/epidemiology , Taiwan/epidemiology , Disease Outbreaks , Renal Insufficiency, Chronic/epidemiology
4.
Sci Rep ; 13(1): 16583, 2023 10 03.
Article in English | MEDLINE | ID: mdl-37789031

ABSTRACT

The Omicron variant of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), first detected in October 2021, possessed many mutations compared to previous variants. We aimed to identify and analyze SARS-CoV-2 Omicron subvariants among coronavirus disease 2019 (COVID-19) patients between January 2022 and September 2022 in Taiwan. The results revealed that BA.2.3.7, featuring K97E and G1251V in the spike protein compared with BA.2, emerged in March 2022 and persistently dominated between April 2022 and August 2022, resulting in the largest COVID-19 outbreak since 2020. The accumulation of amino acid (AA) variations, mainly AA substitution, in the spike protein was accompanied by increasing severity in Omicron-related COVID-19 between April 2022 and January 2023. Older patients were more likely to have severe COVID-19, and comorbidity was a risk factor for COVID-19-related mortality. The accumulated case fatality rate (CFR) dropped drastically after Omicron variants, mainly BA.2.3.7, entered Taiwan after April 2022, and the CFR was 0.16% in Taiwan, which was lower than that worldwide (0.31%) between April 2021 and January 2023. The relatively low CFR in Omicron-related COVID-19 patients can be attributed to adjustments to public health policies, promotion of vaccination programs, effective antiviral drugs, and the lower severity of the Omicron variant.


Subject(s)
COVID-19 , SARS-CoV-2 , Humans , COVID-19/epidemiology , Taiwan/epidemiology , Spike Glycoprotein, Coronavirus
5.
Cell Mol Immunol ; 20(12): 1428-1444, 2023 12.
Article in English | MEDLINE | ID: mdl-37891333

ABSTRACT

Cytokine storms are crucial in the development of various inflammatory diseases, including sepsis and autoimmune disorders. The immunosuppressive cytokine INTERLEUKIN (IL)-37 consists of five isoforms (IL-37a-e). We identified IL-37a as a nuclear cytokine for the first time. Compared to IL-37b, IL-37a demonstrated greater efficacy in protecting against Toll-like receptor-induced cytokine hypersecretion and lethal endotoxic shock. The full-length (FL) form of IL-37a and the N-terminal fragment, which is processed by elastase, could translocate into cell nuclei through a distinctive nuclear localization sequence (NLS)/importin nuclear transport pathway. These forms exerted their regulatory effects independent of the IL-1R8 receptor by transcriptionally upregulating the nuclear receptor peroxisome proliferator-activated receptor (PPARγ). This process involved the recruitment of the H3K4 methyltransferase complex WDR5/MLL4/C/EBPß and H3K4me1/2 to the enhancer/promoter of Pparg. The receptor-independent regulatory pathway of the nuclear IL-37a-PPARγ axis and receptor-dependent signaling by secreted IL-37a maintain homeostasis and are potential therapeutic targets for various inflammatory diseases, including sepsis.


Subject(s)
Cytokines , Sepsis , Humans , Up-Regulation , Cytokines/metabolism , PPAR gamma/metabolism , Cytokine Release Syndrome , Intracellular Signaling Peptides and Proteins/metabolism
9.
Sci Signal ; 16(791): eabm9454, 2023 06 27.
Article in English | MEDLINE | ID: mdl-37368951

ABSTRACT

Dendritic cells (DCs) that express T cell immunoglobulin domain molecule-4 (TIM4), a cell surface receptor for phosphatidylserine, induce T helper 2 (TH2) cell responses and allergic reactions. We elucidated the role of the transcription factor X-box-binding protein-1 (XBP1) in the induction of the TH2 cell response through its role in generating TIM4+ DCs. We found that XBP1 was required for TIM4 mRNA and protein expression in airway DCs in response to the cytokine interleukin-2 (IL-2) and that this pathway was required for TIM4 expression on DCs in response to the allergens PM2.5 and Derf1. The IL-2-XBP1-TIM4 axis in DCs contributed to Derf1/PM2.5-induced, aberrant TH2 cell responses in vivo. An interaction between the guanine nucleotide exchange factor Son of sevenless-1 (SOS1) and the GTPase RAS promoted XBP1 and TIM4 production in DCs. Targeting the XBP1-TIM4 pathway in DCs prevented or alleviated experimental airway allergy. Together, these data suggest that XBP1 is required for TH2 cell responses by inducing the development of TIM4+ DCs, which depends on the IL-2-XBP1-SOS1 axis. This signaling pathway provides potential therapeutic targets for the treatment of TH2 cell-dependent inflammation or allergic diseases.


Subject(s)
Hypersensitivity , Interleukin-2 , Humans , Interleukin-2/metabolism , Transcription Factors/genetics , Transcription Factors/metabolism , Th2 Cells , Membrane Proteins/genetics , Membrane Proteins/metabolism , Hypersensitivity/genetics , Hypersensitivity/metabolism , Dendritic Cells/metabolism , Particulate Matter/metabolism , X-Box Binding Protein 1/genetics
10.
BMC Infect Dis ; 23(1): 301, 2023 May 08.
Article in English | MEDLINE | ID: mdl-37158835

ABSTRACT

BACKGROUND: Dengue virus (DENV) is the leading cause of arboviral diseases in humans worldwide. Currently Dengvaxia, the first dengue vaccine licensed in 20 countries, was recommended for DENV seropositive individuals aged 9-45 years. Studying dengue seroprevalence can improve our understanding of the epidemiology and transmission dynamics of DENV, and facilitate future intervention strategies and assessment of vaccine efficacy. Several DENV envelope protein-based serological tests including IgG and IgG-capture enzyme-linked immunosorbent assays (ELISAs) have been employed in seroprevalence studies. Previously DENV IgG-capture ELISA was reported to distinguish primary and secondary DENV infections during early convalescence, however, its performance over time and in seroprevalence study remains understudied. METHODS: In this study, we used well-documented neutralization test- or reverse-transcription-polymerase-chain reaction-confirmed serum/plasma samples including DENV-naïve, primary and secondary DENV, primary West Nile virus, primary Zika virus, and Zika with previous DENV infection panels to compare the performance of three ELISAs. RESULTS: The sensitivity of the InBios IgG ELISA was higher than that of InBios IgG-capture and SD IgG-capture ELISAs. The sensitivity of IgG-capture ELISAs was higher for secondary than primary DENV infection panel. Within the secondary DENV infection panel, the sensitivity of InBios IgG-capture ELISA decreased from 77.8% at < 6 months to 41.7% at 1-1.5 years, 28.6% at 2-15 years and 0% at > 20 years (p < 0.001, Cochran-Armitage test for trend), whereas that of IgG ELISA remains 100%. A similar trend was observed for SD IgG-capture ELISA. CONCLUSIONS: Our findings demonstrate higher sensitivity of DENV IgG ELISA than IgG-capture ELISA in seroprevalence study and interpretation of DENV IgG-capture ELISA should take sampling time and primary or secondary DENV infection into consideration.


Subject(s)
Dengue Virus , Zika Virus Infection , Zika Virus , Humans , Seroepidemiologic Studies , Enzyme-Linked Immunosorbent Assay , Neutralization Tests , Immunoglobulin G
11.
Front Immunol ; 14: 1148069, 2023.
Article in English | MEDLINE | ID: mdl-37063896

ABSTRACT

Tissue plasminogen activator (tPA) is the only FDA-approved drug for the treatment of ischemic stroke. Delayed tPA administration is associated with increased risks of blood-brain barrier (BBB) disruption and hemorrhagic transformation. Studies have shown that interferon beta (IFNß) or type I IFN receptor (IFNAR1) signaling confers protection against ischemic stroke in preclinical models. In addition, we have previously demonstrated that IFNß can be co-administered with tPA to alleviate delayed tPA-induced adverse effects in ischemic stroke. In this study, we investigated the time limit of IFNß treatment on the extension of tPA therapeutic window and assessed the effect of IFNß on modulating microglia (MG) phenotypes in ischemic stroke with delayed tPA treatment. Mice were subjected to 40 minutes transient middle cerebral artery occlusion (MCAO) followed by delayed tPA treatment in the presence or absence of IFNß at 3h, 4.5h or 6h post-reperfusion. In addition, mice with MG-specific IFNAR1 knockdown were generated to validate the effects of IFNß on modulating MG phenotypes, ameliorating brain injury, and lessening BBB disruption in delayed tPA-treated MCAO mice. Our results showed that IFNß extended tPA therapeutic window to 4.5h post-reperfusion in MCAO mice, and that was accompanied with attenuated brain injury and lessened BBB disruption. Mechanistically, our findings revealed that IFNß modulated MG polarization, leading to the suppression of inflammatory MG and the promotion of anti-inflammatory MG, in delayed tPA-treated MCAO mice. Notably, these effects were abolished in MG-specific IFNAR1 knockdown MCAO mice. Furthermore, the protective effect of IFNß on the amelioration of delayed tPA-exacerbated ischemic brain injury was also abolished in these mice. Finally, we identified that IFNß-mediated modulation of MG phenotypes played a role in maintaining BBB integrity, because the knockdown of IFNAR1 in MG partly reversed the protective effect of IFNß on lessening BBB disruption in delayed tPA-treated MCAO mice. In summary, our study reveals a novel function of IFNß in modulating MG phenotypes, and that may subsequently confer protection against delayed tPA-exacerbated brain injury in ischemic stroke.


Subject(s)
Brain Injuries , Ischemic Stroke , Stroke , Mice , Animals , Tissue Plasminogen Activator/therapeutic use , Stroke/therapy , Microglia , Ischemic Stroke/drug therapy , Interferon-beta/therapeutic use , Infarction, Middle Cerebral Artery/drug therapy , Brain Injuries/drug therapy
12.
Kaohsiung J Med Sci ; 39(6): 624-636, 2023 Jun.
Article in English | MEDLINE | ID: mdl-36951529

ABSTRACT

In Taiwan, coronavirus disease 2019 (COVID-19) involving the delta variant occurred after that involving the alpha variant in 2021. In this study, we aimed to analyze the Delta variant. A total of 318 patients in Taiwan infected with delta variants were identified. The case fatality rate (CFR) of patients infected with delta variants was 0.94% in Taiwan compared with that of those infected with alpha variants (5.95%). The possible reasons for the low CFR might be hybrid immunity due to infection and rapid promotion of the COVID-19 vaccination program during the alpha variant outbreak. We identified three 21J delta variants. Two long gene deletions were detected in these severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) isolates: ORF7aΔ91 in KMUH-8 and SpikeΔ30 in KMUH-9. Protein structure prediction indicates that ORF7aΔ91 results in malfunction of NS7a as an interferon antagonist and that SpikeΔ30 results in a truncated spike protein (N679-A688del), resulting in a lower infection rate compared with the delta variant without these deletions. The impact of these two deletions on SARS-CoV-2-associated pathogenesis deserves further investigation. Delta variants still exist in many regions in the omicron era, and the backbone of the delta variant genome possibly spread worldwide in the form of delta-omicron hybrids (deltacron; e.g., XBC.1 and XAY.2), which casts a potential threat to public health. Our study further highlighted the importance of more understanding of the delta variants.


Subject(s)
COVID-19 , SARS-CoV-2 , Humans , SARS-CoV-2/genetics , COVID-19/epidemiology , Phylogeny , Taiwan/epidemiology , COVID-19 Vaccines
13.
Chinese Journal of Pediatrics ; (12): 339-344, 2023.
Article in Chinese | WPRIM (Western Pacific) | ID: wpr-985873

ABSTRACT

Objective: To explore the clinical and genetic characteristics of children with dopa-responsive dystonia (DRD) caused by tyrosine hydroxylase (TH) gene variations. Methods: Clinical data of 9 children with DRD caused by TH gene variations diagnosed in the Department of Children Rehabilitation, the Third Affiliated Hospital of Zhengzhou University from January 2017 to August 2022 were retrospectively collected and analyzed, including the general conditions, clinical manifestations, laboratory tests, gene variations and follow-up data. Results: Of the 9 children with DRD caused by TH gene variations, 3 were males and 6 were females. The age at diagnosis was 12.0 (8.0, 15.0) months. The initial symptoms of the 8 severe patients were motor delay or degression. Clinical symptoms of the severe patients included motor delay (8 cases), truncal hypotonia (8 cases), limb muscle hypotonia (7 cases), hypokinesia (6 cases), decreased facial expression (4 cases), tremor (3 cases), limb dystonia (3 cases), diurnal fluctuation (2 cases), ptosis (2 cases), limb muscle hypertonia (1 case) and drooling (1 case). The initial symptom of the very severe patient was motor delay. Clinical symptoms of the very severe patient included motor delay, truncal hypotonia, oculogyric crises, status dystonicus, hypokinesia, decreased facial expression, and decreased sleep. Eleven TH gene variants were found, including 5 missense variants, 3 splice site variants, 2 nonsense variants, and 1 insertion variant, as well as 2 novel variants (c.941C>A (p.T314K), c.316_317insCGT (p.F106delinsSF)). Nine patients were followed up for 40 (29, 43) months, and no one was lost to follow-up. Seven of the 8 severe patients were treated by levodopa and benserazide hydrochloride tablets and 1 severe patient was treated by levodopa tablets. All the severe patients responded well to levodopa and benserazide hydrochloride tablets or levodopa tablets. Although the weight of the patients increased and the drug dosage was not increased, the curative effect remained stable and there was no obvious adverse reaction. One severe patient developed dyskinesia in the early stage of treatment with levodopa and benserazide hydrochloride tablets and it disappeared after oral administration of benzhexol hydrochloride tablets. Until the last follow-up, motor development of 7 severe patients returned to normal and 1 severe patient still had motor delay due to receiving levodopa and benserazide hydrochloride tablets for only 2 months. The very severe patient was extremely sensitive to levodopa and benserazide hydrochloride tablets and no improvement was observed in this patient. Conclusions: Most of the DRD caused by TH gene variations are severe form. The clinical manifestations are varied and easily misdiagnosed. Patients of the severe patients responded well to levodopa and benserazide hydrochloride tablets or levodopa tablets, and it takes a long time before full effects of treatment become established. Long-term effect is stable without increasing the drug dosage, and no obvious side effect is observed.


Subject(s)
Female , Humans , Infant , Male , Benserazide/therapeutic use , Dystonia/genetics , Hypokinesia/drug therapy , Levodopa/pharmacology , Muscle Hypotonia , Retrospective Studies , Tyrosine 3-Monooxygenase/genetics
14.
Autoimmunity ; 55(8): 549-558, 2022 12.
Article in English | MEDLINE | ID: mdl-36062759

ABSTRACT

The pathogenesis of ulcerative colitis (UC) is unclear. House dust mite (HDM) is associated with immune inflammation in the body. This study is designed to identify the association between HDM and UC clinical symptoms. UC patients (n = 86) and non-UC control (NC) subjects (n = 64) were recruited. Colon lavage fluids (CLF) were collected from HDM skin prick test positive patients during colonoscopy, and analyzed by immunological approaches. HDM was detected in fecal samples, which was positively correlated with UC clinical symptoms. HDM-specific eosinophils and Th2 cells were detected in CLF, which could be specifically activated by exposing to HDM in the culture. Direct exposure to HDM induced eosinophil activation in the colon of UC patients. UC patients displayed elevated levels of Th2 cytokines in the serum. UC clinical symptom scores were positively correlated with serum levels of Th2 cytokines. HDM was detected in UC patients' stools, which was positively correlated with UC clinical symptoms. Direct exposure to HDM could trigger eosinophilic activation of the colon.


Subject(s)
Colitis, Ulcerative , Eosinophils , Animals , Colitis, Ulcerative/diagnosis , Cytokines , Disease Models, Animal , Eosinophils/pathology , Humans , Pyroglyphidae
15.
Front Immunol ; 13: 887000, 2022.
Article in English | MEDLINE | ID: mdl-35860274

ABSTRACT

Ischemic stroke is caused by a sudden reduction in cerebral blood flow that subsequently induces a complex cascade of pathophysiological responses, leading to brain inflammation and irreversible infarction. 4-ethylguaiacol (4-EG) is reported to suppress inflammatory immune responses. However, whether 4-EG exerts anti-inflammatory effects in ischemic stroke remains unexplored. We evaluated the therapeutic potential of 4-EG and examined the cellular and molecular mechanisms underlying the protective effects of 4-EG in ischemic stroke. The effect of 4-EG in ischemic stroke was determined by using a transient middle cerebral artery occlusion (MCAO) animal model followed by exploring the infarct size, neurological deficits, microglia activation, inflammatory cytokine production, blood-brain barrier (BBB) disruption, brain endothelial cell adhesion molecule expression, and microglial heme oxygenase-1 (HO-1) expression. Nrf2-/- and HO-1 inhibitor ZnPP-treated mice were also subjected to MCAO to evaluate the role of the Nrf2/HO-1 pathway in 4-EG-mediated protection in ischemic stroke. We found that 4-EG attenuated infarct size and neurological deficits, and lessened BBB disruption in ischemic stroke. Further investigation revealed that 4-EG suppressed microglial activation, peripheral inflammatory immune cell infiltration, and brain endothelial cell adhesion molecule upregulation in the ischemic brain. Finally, we identified that the protective effect of 4-EG in ischemic stroke was abolished in Nrf2-/- and ZnPP-treated MCAO mice. Our results identified that 4-EG confers protection against ischemic stroke and reveal that the protective effect of 4-EG in ischemic stroke is mediated through the induction of the Nrf2/HO1 pathway. Thus, our findings suggest that 4-EG could be developed as a novel therapeutic agent for the treatment of ischemic stroke.


Subject(s)
Brain Injuries , Ischemic Stroke , Neuroprotective Agents , Animals , Cell Adhesion Molecules , Guaiacol/analogs & derivatives , Heme Oxygenase-1/metabolism , Infarction, Middle Cerebral Artery/drug therapy , Ischemic Stroke/drug therapy , Mice , NF-E2-Related Factor 2/genetics , NF-E2-Related Factor 2/metabolism , Neuroinflammatory Diseases , Neuroprotective Agents/pharmacology , Neuroprotective Agents/therapeutic use
16.
Front Med (Lausanne) ; 9: 869818, 2022.
Article in English | MEDLINE | ID: mdl-35547225

ABSTRACT

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is believed to have originated in Wuhan City, Hubei Province, China, in December 2019. Infection with this highly dangerous human-infecting coronavirus via inhalation of respiratory droplets from SARS-CoV-2 carriers results in coronavirus disease 2019 (COVID-19), which features clinical symptoms such as fever, dry cough, shortness of breath, and life-threatening pneumonia. Several COVID-19 waves arose in Taiwan from January 2020 to March 2021, with the largest outbreak ever having a high case fatality rate (CFR) (5.95%) between May and June 2021. In this study, we identified five 20I (alpha, V1)/B.1.1.7/GR SARS-CoV-2 (KMUH-3 to 7) lineage viruses from COVID-19 patients in this largest COVID-19 outbreak. Sequence placement analysis using the existing SARS-CoV-2 phylogenetic tree revealed that KMUH-3 originated from Japan and that KMUH-4 to KMUH-7 possibly originated via local transmission. Spike mutations M1237I and D614G were identified in KMUH-4 to KMUH-7 as well as in 43 other alpha/B.1.1.7 sequences of 48 alpha/B.1.1.7 sequences deposited in GISAID derived from clinical samples collected in Taiwan between 20 April and July. However, M1237I mutation was not observed in the other 12 alpha/B.1.1.7 sequences collected between 26 December 2020, and 12 April 2021. We conclude that the largest COVID-19 outbreak in Taiwan between May and June 2021 was initially caused by the alpha/B.1.1.7 variant harboring spike D614G + M1237I mutations, which was introduced to Taiwan by China Airlines cargo crew members. To our knowledge, this is the first documented COVID-19 outbreak caused by alpha/B.1.1.7 variant harboring spike M1237I mutation thus far. The largest COVID-19 outbreak in Taiwan resulted in 13,795 cases and 820 deaths, with a high CFR, at 5.95%, accounting for 80.90% of all cases and 96.47% of all deaths during the first 2 years. The high CFR caused by SARS-CoV-2 alpha variants in Taiwan can be attributable to comorbidities and low herd immunity. We also suggest that timely SARS-CoV-2 isolation and/or sequencing are of importance in real-time epidemiological investigations and in epidemic prevention. The impact of D614G + M1237I mutations in the spike gene on the SARS-CoV-2 virus spreading as well as on high CFR remains to be elucidated.

17.
Brain Res ; 1789: 147947, 2022 08 15.
Article in English | MEDLINE | ID: mdl-35597325

ABSTRACT

In this study a manganese-enhanced magnetic resonance imaging (MEMRI) method was developed for mice for measuring axonal transport (AXT) rates in real time in olfactory receptor neurons, which project from the olfactory epithelium to the olfactory neuronal layer of the olfactory bulb. Using this MEMRI method, two major experiments were conducted: 1) an evaluation of the effects of age on AXT rates and 2) an evaluation of the brain-penetrant, microtubule-stabilizing agent, Epothilone D for effect on AXT rates in aged mice. In these studies, we improved upon previous MEMRI approaches to develop a method where real-time measurements (32 time points) of AXT rates in mice can be determined over a single (approximately 100 min) scanning session. In the age comparisons, AXT rates were significantly higher in young (mean age ∼4.0 months old) versus aged (mean age ∼24.5 months old) mice. Moreover, in aged mice, eight weeks of treatment with Epothilone D, (0.3 and 1.0 mg/kg) was associated with statistically significant increases in AXT rates compared to vehicle-treated subjects. These experiments conducted in a living mammalian model (i.e., wild type, C57BL/6 mice), using a new modified MEMRI method, thus provide further evidence that the process of aging leads to decreases in AXT rates in the brain and they further support the argument that microtubule-based therapeutic strategies designed to improve AXT rates have potential for age-related neurological disorders.


Subject(s)
Axonal Transport , Manganese , Animals , Humans , Magnetic Resonance Imaging/methods , Mammals , Manganese/pharmacology , Mice , Mice, Inbred C57BL , Microtubules
18.
Immunobiology ; 227(3): 152215, 2022 05.
Article in English | MEDLINE | ID: mdl-35468553

ABSTRACT

BACKGROUND: Corticosteroid resistance (CR) is a serious disadvantage in treating many chronic inflammatory conditions. Eosinophils are the main inflammation cells in allergic reactions. Environmental pollution, such as PM2.5, is associated with the pathogenesis of allergic disorders. The objective of this study is to elucidate the mechanism by which the exposure to PM2.5 confers eosinophil CR status. METHODS: Patients with allergic rhinitis were recruited and assigned to corticosteroid sensitive (CS) and CR groups. Eosinophils were purified from nasal lavage fluids collected from patients with allergic rhinitis. A murine AR mouse model was developed with dust mite allergens and PM2.5 as the sensitization reagents. RESULTS: CR status was detected in about 60% eosinophil collected in patients with AR. Upon exposure to eosinophil activators, CS eosinophils released a large quantity of mediators, which was suppressed by the presence of steroids in the culture. CR eosinophils demonstrated resistance to steroidal therapy. RAS activation levels in eosinophils were higher in CR eosinophils than in CS eosinophils. Higher expression of the Son of sevenless-1 (Sos1) was detected in CR eosinophils, which formed a complex with RAS and glucocorticoidreceptor-α in CR eosinophils to prevent the binding between steroids and glucocorticoidreceptor-α. The presence of an Sos1 inhibitor dissociated glucocorticoid receptor-α from RAS/Sos1 complex, that restored the sensitivity to steroids in eosinophils. Administering the Sos1 inhibitor effectively attenuated the experimental allergic rhinitis. CONCLUSIONS: CR status was detected in approximately 1/3 eosinophils sampled from patients with allergic rhinitis. Sos1 was instrumental in the development and perseverance of CR in eosinophils. Sos1 inhibition restored sensitivity to steroids in CR eosinophils, which effectively reduced experimental allergic rhinitis.


Subject(s)
Eosinophils , Rhinitis, Allergic , Adrenal Cortex Hormones/pharmacology , Adrenal Cortex Hormones/therapeutic use , Animals , Eosinophils/metabolism , Humans , Licensure , Mice , Nasal Mucosa/pathology , Nuclear Family , Particulate Matter , Rhinitis, Allergic/drug therapy
20.
Chemosphere ; 299: 134411, 2022 Jul.
Article in English | MEDLINE | ID: mdl-35358558

ABSTRACT

In this study, we conducted a comprehensive study of the distribution, transportation behavior and potential ecological risk of alkylphenol polyethoxylates (APnEOs) in the aquatic environments of Kaohsiung City, Taiwan because little information is available regarding the fate of APnEOs in the water bodies of a total environment. At Love River, APnEOs concentrations were much higher at upstream of interception stations L15 (27.33 ± 1.22 µg/L) and L16 (6.31 ± 0.14 µg/L) than at downstream of interception stations L1-L14 (0.69-2.54 µg/L). Additionally, the average ethoxy (EO) chain lengths of APnEOs at L15 and L16 were longer than at L1-L14. These observations were attributed to the sluice between L14 and L15 that intercepts and accumulates untreated sewage from upstream areas and to the infrastructure of the sewage system that prevents domestic sewage from flowing downstream in the river and to the Kaohsiung Port Area. At Kaohsiung Port Area, APnEO concentrations ranging from 0.63 to 6.50 µg/L were measured. The concentration range and average EO chain length of these APnEOs were similar to those of the downstream stretch of the river, which was attributed to the mixing efficiency of the Kaohsiung Port Area and Love River through tidal exchange. At Cijin Coastal Area, APnEO concentrations ranged from 0.14 to 18.77 µg/L. Notably, the APnEO concentration of surface waters was much higher than that of bottom waters. This observation was attributed to the sewage discharged from the ocean outfall buoying up to the surface instead of mixing with surrounding bottom waters. In potential ecological risk, 19 of 39 sampling points exceeded toxic equivalency of 1 µg/L, and approximately 48.7% of the sampling points would exceed the threshold. The result provides insight into the environmental implications of APnEOs contamination in aquatic environments and useful information for environmental policy and ecological risk assessments.


Subject(s)
Sewage , Water Pollutants, Chemical , Environmental Monitoring , Rivers/chemistry , Taiwan , Water , Water Pollutants, Chemical/analysis
SELECTION OF CITATIONS
SEARCH DETAIL
...