Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 21
Filter
Add more filters










Publication year range
2.
Methods Mol Biol ; 1730: 277-282, 2018.
Article in English | MEDLINE | ID: mdl-29363081

ABSTRACT

We here explain step by step the implementation of gas chromatography coupled with tandem mass spectrometry for the quantitative analysis of intracellular metabolites from the tricarboxylic acid (TCA) cycle such as citrate, isocitrate, alpha-ketoglutarate, succinate, malate, and fumarate. Isotope dilution is used to correct for potential metabolite losses during sample processing, matrix effects, incomplete derivatization, and liner contamination. All measurements are performed in selected reaction monitoring (SRM) mode. Standards and samples are first diluted with a fixed volume of a mixture of fully 13 C-labeled internal standards and then derivatized to give trimethylsilyl-methoxylamine derivatives prior GC-MS/MS analysis.


Subject(s)
Bacteria/chemistry , Metabolomics/methods , Saccharomyces cerevisiae/chemistry , Citric Acid Cycle , Gas Chromatography-Mass Spectrometry/methods , Hydroxylamines/analysis , Trimethylsilyl Compounds/analysis
3.
Bioprocess Biosyst Eng ; 41(2): 157-170, 2018 Feb.
Article in English | MEDLINE | ID: mdl-29052015

ABSTRACT

In its natural environment, the filamentous fungus Aspergillus niger grows on decaying fruits and plant material, thereby enzymatically degrading the lignocellulosic constituents (lignin, cellulose, hemicellulose, and pectin) into a mixture of mono- and oligosaccharides. To investigate the kinetics and stoichiometry of growth of this fungus on lignocellulosic sugars, we carried out batch cultivations on six representative monosaccharides (glucose, xylose, mannose, rhamnose, arabinose, and galacturonic acid) and a mixture of these. Growth on these substrates was characterized in terms of biomass yields, oxygen/biomass ratios, and specific conversion rates. Interestingly, in combination, some of the carbon sources were consumed simultaneously and some sequentially. With a previously developed protocol, a sequential chemostat cultivation experiment was performed on a feed mixture of the six substrates. We found that the uptake of glucose, xylose, and mannose could be described with a Michaelis-Menten-type kinetics; however, these carbon sources seem to be competing for the same transport systems, while the uptake of arabinose, galacturonic acid, and rhamnose appeared to be repressed by the presence of other substrates.


Subject(s)
Aspergillus niger/growth & development , Lignin/metabolism , Monosaccharides/metabolism , Kinetics
4.
Metabolites ; 7(2)2017 May 17.
Article in English | MEDLINE | ID: mdl-28513556

ABSTRACT

Poly(3-hydroxybutyrate) (PHB) is an interesting biopolymer for replacing petroleum-based plastics, its biological production is performed in natural and engineered microorganisms. Current metabolic engineering approaches rely on high-throughput strain construction and screening. Analytical procedures have to be compatible with the small scale and speed of these approaches. Here, we present a method based on isotope dilution mass spectrometry (IDMS) and propanolysis extraction of poly(3-hydroxybutyrate) from an Escherichia coli strain engineered for PHB production. As internal standard (IS), we applied an uniformly labeled 13C-cell suspension, of an E. coli PHB producing strain, grown on U-13C-glucose as C-source. This internal 13C-PHB standard enables to quantify low concentrations of PHB (LOD of 0.01 µg/gCDW) from several micrograms of biomass. With this method, a technical reproducibility of about 1.8% relative standard deviation is achieved. Furthermore, the internal standard is robust towards different sample backgrounds and dilutions. The early addition of the internal standard also enables higher reproducibility and increases sensitivity and throughput by simplified sample preparation steps.

5.
Metabolites ; 6(2)2016 Apr 23.
Article in English | MEDLINE | ID: mdl-27120628

ABSTRACT

Ammonium (NH4⁺) is the most common N-source for yeast fermentations, and N-limitation is frequently applied to reduce growth and increase product yields. While there is significant molecular knowledge on NH4⁺ transport and assimilation, there have been few attempts to measure the in vivo concentration of this metabolite. In this article, we present a sensitive and accurate analytical method to quantify the in vivo intracellular ammonium concentration in Saccharomyces cerevisiae based on standard rapid sampling and metabolomics techniques. The method validation experiments required the development of a proper sample processing protocol to minimize ammonium production/consumption during biomass extraction by assessing the impact of amino acid degradation-an element that is often overlooked. The resulting cold chloroform metabolite extraction method, together with quantification using ultra high performance liquid chromatography-isotope dilution mass spectrometry (UHPLC-IDMS), was not only more sensitive than most of the existing methods but also more accurate than methods that use electrodes, enzymatic reactions, or boiling water or boiling ethanol biomass extraction because it minimized ammonium consumption/production during sampling processing and interference from other metabolites in the quantification of intracellular ammonium. Finally, our validation experiments showed that other metabolites such as pyruvate or 2-oxoglutarate (αKG) need to be extracted with cold chloroform to avoid measurements being biased by the degradation of other metabolites (e.g., amino acids).

6.
Biotechnol Bioeng ; 113(5): 1137-47, 2016 May.
Article in English | MEDLINE | ID: mdl-26479486

ABSTRACT

Fluxomics and metabolomics are crucial tools for metabolic engineering and biomedical analysis to determine the in vivo cellular state. Especially, the application of (13)C isotopes allows comprehensive insights into the functional operation of cellular metabolism. Compared to single MS, tandem mass spectrometry (MS/MS) provides more detailed and accurate measurements of the metabolite enrichment patterns (tandem mass isotopomers), increasing the accuracy of metabolite concentration measurements and metabolic flux estimation. MS-type data from isotope labeling experiments is biased by naturally occurring stable isotopes (C, H, N, O, etc.). In particular, GC-MS(/MS) requires derivatization for the usually non-volatile intracellular metabolites introducing additional natural isotopes leading to measurements that do not directly represent the carbon labeling distribution. To make full use of LC- and GC-MS/MS mass isotopomer measurements, the influence of natural isotopes has to be eliminated (corrected). Our correction approach is analyzed for the two most common applications; (13)C fluxomics and isotope dilution mass spectrometry (IDMS) based metabolomics. Natural isotopes can have an impact on the calculated flux distribution which strongly depends on the substrate labeling and the actual flux distribution. Second, we show that in IDMS based metabolomics natural isotopes lead to underestimated concentrations that can and should be corrected with a nonlinear calibration. Our simulations indicate that the correction for natural abundance in isotope based fluxomics and quantitative metabolomics is essential for correct data interpretation.


Subject(s)
Metabolomics/methods , Saccharomyces cerevisiae/metabolism , Tandem Mass Spectrometry/methods , Carbon Isotopes/analysis , Carbon Isotopes/metabolism , Gas Chromatography-Mass Spectrometry , Isotope Labeling/methods
7.
Metab Eng Commun ; 3: 52-63, 2016 Dec.
Article in English | MEDLINE | ID: mdl-29468113

ABSTRACT

13C labeling experiments in aerobic glucose limited cultures of Saccharomyces cerevisiae at four different growth rates (0.054; 0.101, 0.207, 0.307 h-1) are used for calculating fluxes that include intracellular cycles (e.g., storage carbohydrate cycles, exchange fluxes with amino acids), which are rearranged depending on the growth rate. At low growth rates the impact of the storage carbohydrate recycle is relatively more significant than at high growth rates due to a higher concentration of these materials in the cell (up to 560-fold) and higher fluxes relative to the glucose uptake rate (up to 16%). Experimental observations suggest that glucose can be exported to the extracellular space, and that its source is related to storage carbohydrates, most likely via the export and subsequent extracellular breakdown of trehalose. This hypothesis is strongly supported by 13C-labeling experimental data, measured extracellular trehalose, and the corresponding flux estimations.

8.
Sci Rep ; 5: 12846, 2015 Aug 05.
Article in English | MEDLINE | ID: mdl-26243542

ABSTRACT

Eukaryotic metabolism is organised in complex networks of enzyme catalysed reactions which are distributed over different organelles. To quantify the compartmentalised reactions, quantitative measurements of relevant physiological variables in different compartments are needed, especially of cofactors. NADP(H) are critical components in cellular redox metabolism. Currently, available metabolite measurement methods allow whole cell measurements. Here a metabolite sensor based on a fast equilibrium reaction is introduced to monitor the cytosolic NADPH/NADP ratio in Saccharomyces cerevisiae: NADP + shikimate ⇄ NADPH + H(+) + dehydroshikimate. The cytosolic NADPH/NADP ratio was determined by measuring the shikimate and dehydroshikimate concentrations (by GC-MS/MS). The cytosolic NADPH/NADP ratio was determined under batch and chemostat (aerobic, glucose-limited, D = 0.1 h(-1)) conditions, to be 22.0 ± 2.6 and 15.6 ± 0.6, respectively. These ratios were much higher than the whole cell NADPH/NADP ratio (1.05 ± 0.08). In response to a glucose pulse, the cytosolic NADPH/NADP ratio first increased very rapidly and restored the steady state ratio after 3 minutes. In contrast to this dynamic observation, the whole cell NADPH/NADP ratio remained nearly constant. The novel cytosol NADPH/NADP measurements provide new insights into the thermodynamic driving forces for NADP(H)-dependent reactions, like amino acid synthesis, product pathways like fatty acid production or the mevalonate pathway.


Subject(s)
Alcohol Oxidoreductases/chemistry , Cytoplasm/metabolism , NADP/metabolism , Saccharomyces cerevisiae/metabolism , Biosensing Techniques , Carbohydrate Metabolism , Glucose/metabolism , Glucosephosphate Dehydrogenase/metabolism , Kinetics , Metabolic Flux Analysis , Oxidation-Reduction , Thermodynamics
9.
Biotechnol Bioeng ; 112(5): 1033-46, 2015 May.
Article in English | MEDLINE | ID: mdl-25502731

ABSTRACT

Eukaryotic metabolism consists of a complex network of enzymatic reactions and transport processes which are distributed over different subcellular compartments. Currently, available metabolite measurement protocols allow to measure metabolite whole cell amounts which hinder progress to describe the in vivo dynamics in different compartments, which are driven by compartment specific concentrations. Phosphate (Pi) is an essential component for: (1) the metabolic balance of upper and lower glycolytic flux; (2) Together with ATP and ADP determines the phosphorylation energy. Especially, the cytosolic Pi has a critical role in disregulation of glycolysis in tps1 knockout. Here we developed a method that enables us to monitor the cytosolic Pi concentration in S. cerevisiae using an equilibrium sensor reaction: maltose + Pi < = > glucose + glucose-1-phosphate. The required enzyme, maltose phosphorylase from L. sanfranciscensis was overexpressed in S. cerevisiae. With this reaction in place, the cytosolic Pi concentration was obtained from intracellular glucose, G1P and maltose concentrations. The cytosolic Pi concentration was determined in batch and chemostat (D = 0.1 h(-1) ) conditions, which was 17.88 µmol/gDW and 25.02 µmol/gDW, respectively under Pi-excess conditions. Under Pi-limited steady state (D = 0.1 h(-1) ) conditions, the cytosolic Pi concentration dropped to only 17.7% of the cytosolic Pi in Pi-excess condition (4.42 µmol/gDW vs. 25.02 µmol/gDW). In response to a Pi pulse, the cytosolic Pi increased very rapidly, together with the concentration of sugar phosphates. Main sources of the rapid Pi increase are vacuolar Pi (and not the polyPi), as well as Pi uptake from the extracellular space. The temporal increase of cytosolic Pi increases the driving force of GAPDH reaction of the lower glycolytic reactions. The novel cytosol specific Pi concentration measurements provide new insight into the thermodynamic driving force for ATP hydrolysis, GAPDH reaction, and Pi transport over the plasma and vacuolar membranes.


Subject(s)
Glucosephosphates/metabolism , Phosphates/metabolism , Saccharomyces cerevisiae/metabolism , Adenosine Triphosphate/metabolism , Biosensing Techniques/economics , Biosensing Techniques/methods , Glucose/metabolism , Glycolysis , Maltose/metabolism , Metabolomics/economics , Metabolomics/methods , Saccharomyces cerevisiae/cytology
10.
Methods Mol Biol ; 1191: 91-105, 2014.
Article in English | MEDLINE | ID: mdl-25178786

ABSTRACT

Quantitative intracellular metabolite measurements are essential for systems biology and modeling of cellular metabolism. The MS-based quantification is error prone because (1) several sampling processing steps have to be performed, (2) the sample contains a complex mixture of partly compounds with the same mass and similar retention time, and (3) especially salts influence the ionization efficiency. Therefore internal standards are required, best for each measured compound. The use of labeled biomass, (13)C extract, is a valuable tool, reducing the standard deviations of intracellular concentration measurements significantly (especially regarding technical reproducibility). Using different platforms, i.e., LC-MS and GC-MS, a large number of different metabolites can be quantified (currently about 110).


Subject(s)
Carbon Isotopes , Metabolic Flux Analysis/methods , Metabolomics/methods , Carbon Isotopes/metabolism , Chromatography, Liquid/methods , Gas Chromatography-Mass Spectrometry/methods , Mass Spectrometry/methods , Metabolomics/statistics & numerical data
11.
BMC Syst Biol ; 7: 17, 2013 Feb 28.
Article in English | MEDLINE | ID: mdl-23448228

ABSTRACT

BACKGROUND: Several studies have shown that the utilization of mixed carbon feeds instead of methanol as sole carbon source is beneficial for protein production with the methylotrophic yeast Pichia pastoris. In particular, growth under mixed feed conditions appears to alleviate the metabolic burden related to stress responses triggered by protein overproduction and secretion. Yet, detailed analysis of the metabolome and fluxome under mixed carbon source metabolizing conditions are missing. To obtain a detailed flux distribution of central carbon metabolism, including the pentose phosphate pathway under methanol-glucose conditions, we have applied metabolomics and instationary ¹³C flux analysis in chemostat cultivations. RESULTS: Instationary ¹³C-based metabolic flux analysis using GC-MS and LC-MS measurements in time allowed for an accurate mapping of metabolic fluxes of glycolysis, pentose phosphate and methanol assimilation pathways. Compared to previous results from NMR-derived stationary state labelling data (proteinogenic amino acids, METAFoR) more fluxes could be determined with higher accuracy. Furthermore, using a thermodynamic metabolic network analysis the metabolite measurements and metabolic flux directions were validated. Notably, the concentration of several metabolites of the upper glycolysis and pentose phosphate pathway increased under glucose-methanol feeding compared to the reference glucose conditions, indicating a shift in the thermodynamic driving forces. Conversely, the extracellular concentrations of all measured metabolites were lower compared with the corresponding exometabolome of glucose-grown P. pastoris cells.The instationary ¹³C flux analysis resulted in fluxes comparable to previously obtained from NMR datasets of proteinogenic amino acids, but allowed several additional insights. Specifically, i) in vivo metabolic flux estimations were expanded to a larger metabolic network e.g. by including trehalose recycling, which accounted for about 1.5% of the glucose uptake rate; ii) the reversibility of glycolytic/gluconeogenesis, TCA cycle and pentose phosphate pathways reactions was estimated, revealing a significant gluconeogenic flux from the dihydroxyacetone phosphate/glyceraldehydes phosphate pool to glucose-6P. The origin of this finding could be carbon recycling from the methanol assimilatory pathway to the pentose phosphate pool. Additionally, high exchange fluxes of oxaloacetate with aspartate as well as malate indicated amino acid pool buffering and the activity of the malate/Asp shuttle; iii) the ratio of methanol oxidation vs utilization appeared to be lower (54 vs 79% assimilated methanol directly oxidized to CO2). CONCLUSIONS: In summary, the application of instationary ¹³C-based metabolic flux analysis to P. pastoris provides an experimental framework with improved capabilities to explore the regulation of the carbon and energy metabolism of this yeast, particularly for the case of methanol and multicarbon source metabolism.


Subject(s)
Carbon/metabolism , Glucose/metabolism , Metabolomics/methods , Methanol/metabolism , Pichia/metabolism , Carbon Isotopes/metabolism , Chromatography, Liquid , Gas Chromatography-Mass Spectrometry , Pentose Phosphate Pathway/physiology , Thermodynamics
12.
Microb Cell Fact ; 11: 140, 2012 Oct 25.
Article in English | MEDLINE | ID: mdl-23098235

ABSTRACT

BACKGROUND: Penicillium chrysogenum, the main production strain for penicillin-G, has a high content of intracellular carbohydrates, especially reduced sugars such as mannitol, arabitol, erythritol, as well as trehalose and glycogen. In previous steady state C wash-in experiments a delay of labeling enrichments in glycolytic intermediates was observed, which suggests turnover of storage carbohydrates. The turnover of storage pools consumes ATP which is expected to reduce the product yield for energy demanding production pathways like penicillin-G. RESULTS: In this study, a ¹³C labeling wash-in experiment of 1 hour was performed to systematically quantify the intracellular flux distribution including eight substrate cycles. The experiments were performed using a mixed carbon source of 85% CmolGlc/CmolGlc+EtOH labeled glucose (mixture of 90% [1-¹³C1] and 10% [U-¹³C6]) and 15% ethanol [U-¹³C2]. It was found, that (1) also several extracellular pools are enriched with ¹³C labeling rapidly (trehalose, mannitol, and others), (2) the intra- to extracellular metabolite concentration ratios were comparable for a large set of metabolites while for some carbohydrates (mannitol, trehalose, and glucose) the measured ratios were much higher. CONCLUSIONS: The fast enrichment of several extracellular carbohydrates and a concentration ratio higher than the ratio expected from cell lysis (2%) indicate active (e.g. ATP consuming) transport cycles over the cellular membrane. The flux estimation indicates, that substrate cycles account for about 52% of the gap in the ATP balance based on metabolic flux analysis.


Subject(s)
Carbon Cycle , Penicillium chrysogenum/metabolism , Carbon Isotopes/metabolism , Cluster Analysis , Ethanol/metabolism , Glucose/metabolism , Isotope Labeling , Substrate Specificity
13.
Microb Cell Fact ; 11: 83, 2012 Jun 15.
Article in English | MEDLINE | ID: mdl-22704468

ABSTRACT

BACKGROUND: Environmental and intrinsic stress factors can result in the global alteration of yeast physiology, as evidenced by several transcriptional studies. Hypoxia has been shown to have a beneficial effect on the expression of recombinant proteins in Pichia pastoris growing on glucose. Furthermore, transcriptional profiling analyses revealed that oxygen availability was strongly affecting ergosterol biosynthesis, central carbon metabolism and stress responses, in particular the unfolded protein response. To contribute to the better understanding of the effect and interplay of oxygen availability and foreign protein secretion on central metabolism, a first quantitative metabolomic analysis of free amino acids pools in a recombinant P. pastoris strain growing under different oxygen availability conditions has been performed. RESULTS: The values obtained indicate significant variations in the intracellular amino acid pools due to different oxygen availability conditions, showing an overall increase of their size under oxygen limitation. Notably, even while foreign protein productivities were relatively low (about 40-80 µg Fab/g(DCW)·h), recombinant protein production was found to have a limited but significant impact on the intracellular amino acid pools, which were generally decreased in the producing strain compared with the reference strain. However, observed changes in individual amino acids pools were not correlated with their corresponding relative abundance in the recombinant protein sequence, but to the overall cell protein amino acid compositional variations. CONCLUSIONS: Overall, the results obtained, combined with previous transcriptomic and proteomic analyses provide a systematic metabolic fingerprint of the oxygen availability impact on recombinant protein production in P. pastoris.


Subject(s)
Amino Acids/metabolism , Metabolomics , Oxygen/metabolism , Pichia/metabolism , Recombinant Proteins/biosynthesis , Metabolome , Principal Component Analysis , Recombinant Proteins/genetics , Unfolded Protein Response
14.
Metabolomics ; 8(2): 284-298, 2012 Apr.
Article in English | MEDLINE | ID: mdl-22448155

ABSTRACT

Accurate, reliable and reproducible measurement of intracellular metabolite levels has become important for metabolic studies of microbial cell factories. A first critical step for metabolomic studies is the establishment of an adequate quenching and washing protocol, which ensures effective arrest of all metabolic activity and removal of extracellular metabolites, without causing leakage of metabolites from the cells. Five different procedures based on cold methanol quenching and cell separation by filtration were tested for metabolomics of Pichia pastoris regarding methanol content and temperature of the quenching solution as key parameters. Quantitative evaluation of these protocols was carried out through mass balance analysis, based on metabolite measurements in all sample fractions, those are whole broth, quenched and washed cells, culture filtrate and quenching and washing solution. Finally, the optimal method was used to study the time profiles of free amino acid and central carbon metabolism intermediates in glucose-limited chemostat cultures. Acceptable recoveries (>90%) were obtained for all quenching procedures tested. However, quenching at -27°C in 60% v/v methanol performed slightly better in terms of leakage minimization. We could demonstrate that five residence times under glucose limitation are enough to reach stable intracellular metabolite pools. Moreover, when comparing P. pastoris and S. cerevisiae metabolomes, under the same cultivation conditions, similar metabolite fingerprints were found in both yeasts, except for the lower glycolysis, where the levels of these metabolites in P. pastoris suggested an enzymatic capacity limitation in that part of the metabolism. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (doi:10.1007/s11306-011-0308-1) contains supplementary material, which is available to authorized users.

15.
Eukaryot Cell ; 11(2): 238-49, 2012 Feb.
Article in English | MEDLINE | ID: mdl-22158714

ABSTRACT

The industrial production of penicillin G by Penicillium chrysogenum requires the supplementation of the growth medium with the side chain precursor phenylacetate. The growth of P. chrysogenum with phenylalanine as the sole nitrogen source resulted in the extracellular production of phenylacetate and penicillin G. To analyze this natural pathway for penicillin G production, chemostat cultures were switched to [U-(13)C]phenylalanine as the nitrogen source. The quantification and modeling of the dynamics of labeled metabolites indicated that phenylalanine was (i) incorporated in nascent protein, (ii) transaminated to phenylpyruvate and further converted by oxidation or by decarboxylation, and (iii) hydroxylated to tyrosine and subsequently metabolized via the homogentisate pathway. The involvement of the homogentisate pathway was supported by the comparative transcriptome analysis of P. chrysogenum cultures grown with phenylalanine and with (NH(4))(2)SO(4) as the nitrogen source. This transcriptome analysis also enabled the identification of two putative 2-oxo acid decarboxylase genes (Pc13g9300 and Pc18g01490). cDNAs of both genes were cloned and expressed in the 2-oxo-acid-decarboxylase-free Saccharomyces cerevisiae strain CEN.PK711-7C (pdc1 pdc5 pdc6Δ aro10Δ thi3Δ). The introduction of Pc13g09300 restored the growth of this S. cerevisiae mutant on glucose and phenylalanine, thereby demonstrating that Pc13g09300 encodes a dual-substrate pyruvate and phenylpyruvate decarboxylase, which plays a key role in an Ehrlich-type pathway for the production of phenylacetate in P. chrysogenum. These results provide a basis for the metabolic engineering of P. chrysogenum for the production of the penicillin G side chain precursor phenylacetate.


Subject(s)
Penicillin G/metabolism , Penicillium chrysogenum/metabolism , Phenylalanine/metabolism , Carboxy-Lyases/genetics , Carboxy-Lyases/metabolism , Decarboxylation , Metabolic Engineering , Penicillium chrysogenum/enzymology , Phenylacetates/metabolism , Phenylpyruvic Acids/metabolism , Saccharomyces cerevisiae/enzymology , Saccharomyces cerevisiae/metabolism , Transcriptome
16.
Biotechnol J ; 6(8): 944-58, 2011 Aug.
Article in English | MEDLINE | ID: mdl-21751388

ABSTRACT

In large-scale production reactors the combination of high broth viscosity and large broth volume leads to insufficient liquid-phase mixing, resulting in gradients in, for example, the concentrations of substrate and oxygen. This often leads to differences in productivity of the full-scale process compared with laboratory scale. In this scale-down study of penicillin production, the influence of substrate gradients on process performance and cell physiology was investigated by imposing an intermittent feeding regime on a laboratory-scale culture of a high yielding strain of Penicillium chrysogenum. It was found that penicillin production was reduced by a factor of two in the intermittently fed cultures relative to constant feed cultivations fed with the same amount of glucose per hour, while the biomass yield was the same. Measurement of the levels of the intermediates of the penicillin biosynthesis pathway, along with the enzyme levels, suggested that the reduction of the flux through the penicillin pathway is mainly the result of a lower influx into the pathway, possibly due to inhibitory levels of adenosine monophosphate and pyrophosphate and lower activating levels of adenosine triphosphate during the zero-substrate phase of each cycle of intermittent feeding.


Subject(s)
Glucose/metabolism , Industrial Microbiology , Penicillins/biosynthesis , Penicillium chrysogenum/metabolism , Carbon Cycle , Coenzyme A Ligases/metabolism , Metabolic Networks and Pathways , Oxidoreductases/metabolism , Penicillium chrysogenum/chemistry , Peptide Synthases/metabolism
17.
Metab Eng ; 13(3): 294-306, 2011 May.
Article in English | MEDLINE | ID: mdl-21354323

ABSTRACT

Kinetic modeling of metabolism holds great potential for metabolic engineering but is hindered by the gap between model complexity and availability of in vivo data. There is also growing interest in network-wide thermodynamic analyses, which are currently limited by the scarcity and unreliability of thermodynamic reference data. Here we propose an in vivo data-driven approach to simultaneously address both problems. We then demonstrate the procedure in Saccharomyces cerevisiae, using chemostats to generate a large flux/metabolite dataset, under 32 conditions spanning a large range of fluxes. Reactions were classified as pseudo-, near- or far-from-equilibrium, allowing the complexity of mathematical description to be tailored to the kinetic behavior displayed in vivo. For 3/4 of the reactions we derived fully in vivo-parameterized kinetic descriptions which can be readily incorporated into models. For near-equilibrium reactions this involved a new simplified format, dubbed "Q-linear kinetics". We also demonstrate, for the first time, systematic estimation of apparent in vivo K(eq) values. Remarkably, comparison with E. coli data suggests they constitute a suitable in vivo interspecies thermodynamic reference.


Subject(s)
Escherichia coli/enzymology , Models, Biological , Saccharomyces cerevisiae/enzymology , Kinetics , Thermodynamics
18.
Methods Mol Biol ; 708: 131-46, 2011.
Article in English | MEDLINE | ID: mdl-21207287

ABSTRACT

In this chapter, we describe a method for the quantitative analysis of glycolytic intermediates using ion chromatography-mass spectrometry (IC-MS) and gas chromatography (GC)-MS as complementary methods. With IC-MS-MS, pyruvate, glucose-6-phosphate, fructuse-6-phosphate, fructose-1,6-bisphosphate, phosphoenolpyruvate, and the sum of 2-phosphoglyceraldehyde + 3-phosphoglyceraldehyde can be quantified. With GC-MS using selected ion monitoring, glyceraldehyde-3-phosphate, dihydroxyacetonephosphate, 2-phosphoglyceraldehyde, and 3-phosphoglyceraldehyde can be analyzed. The derivatization for GC-MS is performed in two steps. In the first step, the keto and the aldehyde groups are oximated. In the next step, a silylation with N-methyl-N-trimethylsilyltrifluoroacetamide (MSTFA) is performed, giving TMS-MOX derivatives of the glycolytic intermediates. The derivatives are separated on a GC column and detected with MS in SIM mode.


Subject(s)
Chromatography, Ion Exchange/methods , Gas Chromatography-Mass Spectrometry/methods , Glycolysis , Carbohydrates/analysis , Carbohydrates/chemistry , Carbohydrates/isolation & purification , Chromatography, Ion Exchange/standards , Gas Chromatography-Mass Spectrometry/standards , Reference Standards
19.
Anal Chem ; 81(17): 7379-89, 2009 Sep 01.
Article in English | MEDLINE | ID: mdl-19653633

ABSTRACT

Accurate determination of intracellular metabolite levels requires well-validated procedures for sampling and sample treatment. Several methods exist for metabolite extraction, but the literature is contradictory regarding the adequacy and performance of each technique. Using a strictly quantitative approach, we have re-evaluated five methods (hot water, HW; boiling ethanol, BE; chloroform-methanol, CM; freezing-thawing in methanol, FTM; acidic acetonitrile-methanol, AANM) for the extraction of 44 intracellular metabolites (phosphorylated intermediates, amino acids, organic acids, nucleotides) from S. cerevisiae cells. Two culture modes were investigated (batch and chemostat) to check for growth condition dependency, and three targeted platforms were employed (two LC-MS and one GC/MS) to exclude analytical bias. Additionally, for the determination of metabolite recoveries, we applied a novel approach based on addition of (13)C-labeled internal standards at different stages of sample processing. We found that the choice of extraction method can drastically affect measured metabolite levels, to an extent that for some metabolites even the direction of changes between growth conditions can be inverted. The best performances, in terms of efficacy and metabolite recoveries, were achieved with BE and CM, which yielded nearly identical levels for the metabolites analyzed. According to our results, AANM performs poorly in yeast and FTM cannot be considered adequate as an extraction method, as it does not ensure inactivation of enzymatic activity.


Subject(s)
Chemical Fractionation/methods , Metabolome , Metabolomics/methods , Saccharomyces cerevisiae/metabolism , Chromatography, Liquid , Freezing , Gas Chromatography-Mass Spectrometry , Hot Temperature , Solvents , Water
20.
J Chromatogr B Analyt Technol Biomed Life Sci ; 877(27): 3231-6, 2009 Oct 01.
Article in English | MEDLINE | ID: mdl-19647496

ABSTRACT

A gas chromatography isotope dilution mass spectrometry (GC-IDMS) method was developed for the quantification of the metabolites of the non-oxidative part of pentose phosphate pathway (PPP). A mid-polar GC column (Zebron ZB-AAA, 10m, film composition 50% phenyl 50% dimethyl polysiloxane) was used for the chromatographic separation of the intermediates. The optimized GC-MS procedure resulted in improved separation performances and higher sensitivities compared to previous methods. Furthermore, the use of (13)C-labeled cell extracts as internal standards improved the data quality and eliminated the need to perform a recovery check for each metabolite. The applicability of the new method was demonstrated by analyzing intracellular metabolite levels in samples derived from aerobic glucose-limited chemostat cultures of Saccharomyces cerevisiae at steady state as well as following a short-term glucose pulse. The major achievements of the proposed quantitative method are the independent quantification of the epimers ribulose-5-phosphate and xylulose-5-posphate and the measurement of compounds present at very low concentrations in biological samples such as erythrose-4-phosphate and glyceraldehyde-3-phosphate.


Subject(s)
Gas Chromatography-Mass Spectrometry/methods , Pentose Phosphate Pathway , Pentosephosphates/analysis , Ribulosephosphates/analysis , Saccharomyces cerevisiae/metabolism , Carbon Isotopes/chemistry , Glyceraldehyde 3-Phosphate/analysis , Isotope Labeling , Metabolomics/methods , Oximes/chemistry , Reproducibility of Results , Sensitivity and Specificity , Sugar Phosphates/analysis , Trimethylsilyl Compounds/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...