Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 14 de 14
Filter
Add more filters










Publication year range
1.
Nat Commun ; 14(1): 1958, 2023 04 07.
Article in English | MEDLINE | ID: mdl-37029129

ABSTRACT

The high frequency of homologous recombination deficiency (HRD) is the main rationale of testing platinum-based chemotherapy in triple-negative breast cancer (TNBC), however, the existing methods to identify HRD are controversial and there is a medical need for predictive biomarkers. We assess the in vivo response to platinum agents in 55 patient-derived xenografts (PDX) of TNBC to identify determinants of response. The HRD status, determined from whole genome sequencing, is highly predictive of platinum response. BRCA1 promoter methylation is not associated with response, in part due to residual BRCA1 gene expression and homologous recombination proficiency in different tumours showing mono-allelic methylation. Finally, in 2 cisplatin sensitive tumours we identify mutations in XRCC3 and ORC1 genes that are functionally validated in vitro. In conclusion, our results demonstrate that the genomic HRD is predictive of platinum response in a large cohort of TNBC PDX and identify alterations in XRCC3 and ORC1 genes driving cisplatin response.


Subject(s)
Triple Negative Breast Neoplasms , Humans , Triple Negative Breast Neoplasms/drug therapy , Triple Negative Breast Neoplasms/genetics , Triple Negative Breast Neoplasms/pathology , Cisplatin/pharmacology , Cisplatin/therapeutic use , Platinum/therapeutic use , BRCA1 Protein/genetics , Homologous Recombination , Mutation , Whole Genome Sequencing , BRCA2 Protein/genetics
3.
Nat Genet ; 53(1): 86-99, 2021 01.
Article in English | MEDLINE | ID: mdl-33414553

ABSTRACT

Patient-derived xenografts (PDXs) are resected human tumors engrafted into mice for preclinical studies and therapeutic testing. It has been proposed that the mouse host affects tumor evolution during PDX engraftment and propagation, affecting the accuracy of PDX modeling of human cancer. Here, we exhaustively analyze copy number alterations (CNAs) in 1,451 PDX and matched patient tumor (PT) samples from 509 PDX models. CNA inferences based on DNA sequencing and microarray data displayed substantially higher resolution and dynamic range than gene expression-based inferences, and they also showed strong CNA conservation from PTs through late-passage PDXs. CNA recurrence analysis of 130 colorectal and breast PT/PDX-early/PDX-late trios confirmed high-resolution CNA retention. We observed no significant enrichment of cancer-related genes in PDX-specific CNAs across models. Moreover, CNA differences between patient and PDX tumors were comparable to variations in multiregion samples within patients. Our study demonstrates the lack of systematic copy number evolution driven by the PDX mouse host.


Subject(s)
DNA Copy Number Variations/genetics , Xenograft Model Antitumor Assays , Animals , Databases, Genetic , Gene Expression Regulation, Neoplastic , Humans , Mice , Neoplasm Metastasis , Polymorphism, Single Nucleotide/genetics , Exome Sequencing
4.
Sci Transl Med ; 12(531)2020 02 19.
Article in English | MEDLINE | ID: mdl-32075943

ABSTRACT

Topoisomerase I (TOP1) inhibitors trap TOP1 cleavage complexes resulting in DNA double-strand breaks (DSBs) during replication, which are repaired by homologous recombination (HR). Triple-negative breast cancer (TNBC) could be eligible for TOP1 inhibitors given the considerable proportion of tumors with a defect in HR-mediated repair (BRCAness). The TOP1 inhibitor irinotecan was tested in 40 patient-derived xenografts (PDXs) of TNBC. BRCAness was determined with a single-nucleotide polymorphism (SNP) assay, and expression of Schlafen family member 11 (SLFN11) and retinoblastoma transcriptional corepressor 1 (RB1) was evaluated by real-time polymerase chain reaction (RT-PCR) and immunohistochemistry analyses. In addition, the combination of irinotecan and the ataxia telangiectasia and Rad3-related protein (ATR) inhibitor VE-822 was tested in SLFN11-negative PDXs, and two clinical non-camptothecin TOP1 inhibitors (LMP400 and LMP776) were tested. Thirty-eight percent of the TNBC models responded to irinotecan. BRCAness combined with high SLFN11 expression and RB1 loss identified highly sensitive tumors, consistent with the notion that deficiencies in cell cycle checkpoints and DNA repair result in high sensitivity to TOP1 inhibitors. Treatment by the ATR inhibitor VE-822 increased sensitivity to irinotecan in SLFN11-negative PDXs and abolished irinotecan-induced phosphorylation of checkpoint kinase 1 (CHK1). LMP400 (indotecan) and LMP776 (indimitecan) showed high antitumor activity in BRCA1-mutated or BRCAness-positive PDXs. Last, low SLFN11 expression was associated with poor survival in 250 patients with TNBC treated with anthracycline-based chemotherapy. In conclusion, a substantial proportion of TNBC respond to irinotecan. BRCAness, high SLFN11 expression, and RB1 loss are highly predictive of response to irinotecan and the clinical indenoisoquinoline TOP1 inhibitors.


Subject(s)
Topoisomerase I Inhibitors , Triple Negative Breast Neoplasms , Humans , Irinotecan/pharmacology , Irinotecan/therapeutic use , Nuclear Proteins/metabolism , Retinoblastoma Binding Proteins , Topoisomerase I Inhibitors/pharmacology , Topoisomerase I Inhibitors/therapeutic use , Triple Negative Breast Neoplasms/drug therapy , Triple Negative Breast Neoplasms/genetics , Ubiquitin-Protein Ligases
5.
BMC Bioinformatics ; 19(1): 366, 2018 Oct 04.
Article in English | MEDLINE | ID: mdl-30286710

ABSTRACT

BACKGROUND: Mouse xenografts from (patient-derived) tumors (PDX) or tumor cell lines are widely used as models to study various biological and preclinical aspects of cancer. However, analyses of their RNA and DNA profiles are challenging, because they comprise reads not only from the grafted human cancer but also from the murine host. The reads of murine origin result in false positives in mutation analysis of DNA samples and obscure gene expression levels when sequencing RNA. However, currently available algorithms are limited and improvements in accuracy and ease of use are necessary. RESULTS: We developed the R-package XenofilteR, which separates mouse from human sequence reads based on the edit-distance between a sequence read and reference genome. To assess the accuracy of XenofilteR, we generated sequence data by in silico mixing of mouse and human DNA sequence data. These analyses revealed that XenofilteR removes > 99.9% of sequence reads of mouse origin while retaining human sequences. This allowed for mutation analysis of xenograft samples with accurate variant allele frequencies, and retrieved all non-synonymous somatic tumor mutations. CONCLUSIONS: XenofilteR accurately dissects RNA and DNA sequences from mouse and human origin, thereby outperforming currently available tools. XenofilteR is open source and available at https://github.com/PeeperLab/XenofilteR .


Subject(s)
High-Throughput Nucleotide Sequencing/methods , Animals , Computers , Databases, Genetic , Humans , Mice
6.
J Natl Cancer Inst ; 108(11)2016 11.
Article in English | MEDLINE | ID: mdl-27381626

ABSTRACT

BACKGROUND: Although BRCA1-deficient tumors are extremely sensitive to DNA-damaging drugs and poly(ADP-ribose) polymerase (PARP) inhibitors, recurrences do occur and, consequently, resistance to therapy remains a serious clinical problem. To study the underlying mechanisms, we induced therapy resistance in patient-derived xenograft (PDX) models of BRCA1-mutated and BRCA1-methylated triple-negative breast cancer. METHODS: A cohort of 75 mice carrying BRCA1-deficient breast PDX tumors was treated with cisplatin, melphalan, nimustine, or olaparib, and treatment sensitivity was determined. In tumors that acquired therapy resistance, BRCA1 expression was investigated using quantitative real-time polymerase chain reaction and immunoblotting. Next-generation sequencing, methylation-specific multiplex ligation-dependent probe amplification (MLPA) and Target Locus Amplification (TLA)-based sequencing were used to determine mechanisms of BRCA1 re-expression in therapy-resistant tumors. RESULTS: BRCA1 protein was not detected in therapy-sensitive tumors but was found in 31 out of 42 resistant cases. Apart from previously described mechanisms involving BRCA1-intragenic deletions and loss of BRCA1 promoter hypermethylation, a novel resistance mechanism was identified in four out of seven BRCA1-methylated PDX tumors that re-expressed BRCA1 but retained BRCA1 promoter hypermethylation. In these tumors, we found de novo gene fusions that placed BRCA1 under the transcriptional control of a heterologous promoter, resulting in re-expression of BRCA1 and acquisition of therapy resistance. CONCLUSIONS: In addition to previously described clinically relevant resistance mechanisms in BRCA1-deficient tumors, we describe a novel resistance mechanism in BRCA1-methylated PDX tumors involving de novo rearrangements at the BRCA1 locus, demonstrating that BRCA1-methylated breast cancers may acquire therapy resistance via both epigenetic and genetic mechanisms.


Subject(s)
Antineoplastic Agents/therapeutic use , Drug Resistance, Neoplasm/genetics , Gene Fusion , Genes, BRCA1 , Triple Negative Breast Neoplasms/drug therapy , Triple Negative Breast Neoplasms/genetics , Animals , BRCA1 Protein/deficiency , Cisplatin/therapeutic use , DNA Methylation , Female , Gene Expression , Humans , Melphalan/therapeutic use , Mice , Mutation , Neoplasm Transplantation , Nimustine/therapeutic use , Phthalazines/therapeutic use , Piperazines/therapeutic use , Promoter Regions, Genetic
7.
J Proteome Res ; 14(2): 1069-75, 2015 Feb 06.
Article in English | MEDLINE | ID: mdl-25553735

ABSTRACT

In recent years, mass spectrometry imaging (MSI) has been shown to be a promising technique in oncology. The effective application of MSI, however, is hampered by the complexity of the generated data. Bioinformatic approaches that reduce the complexity of these data are needed for the effective use in a (bio)medical setting. This holds especially for the analysis of tissue microarrays (TMA), which consist of hundreds of small tissue cores. Here we present an approach that combines MSI on tissue microarrays with principal component linear discriminant analysis (PCA-LDA) to predict treatment response. The feasibility of such an approach was evaluated on a set of patient-derived xenograft models of triple-negative breast cancer (TNBC). PCA-LDA was used to classify TNBC tumor tissues based on the proteomic information obtained with matrix-assisted laser desorption ionization (MALDI) MSI from the TMA surface. Classifiers based on two different tissue microarrays from the same tumor models showed overall classification accuracies between 59 and 77%, as determined by cross-validation. Reproducibility tests revealed that the two models were similar. A clear effect of intratumor heterogeneity of the classification scores was observed. These results demonstrate that the analysis of MALDI-MSI data by PCA-LDA is a valuable approach for the classification of treatment response and tumor heterogeneity in breast cancer.


Subject(s)
Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization/methods , Triple Negative Breast Neoplasms/drug therapy , Discriminant Analysis , Female , Humans , Principal Component Analysis , Xenograft Model Antitumor Assays
8.
Cell ; 159(3): 499-513, 2014 Oct 23.
Article in English | MEDLINE | ID: mdl-25417103

ABSTRACT

Stromal communication with cancer cells can influence treatment response. We show that stromal and breast cancer (BrCa) cells utilize paracrine and juxtacrine signaling to drive chemotherapy and radiation resistance. Upon heterotypic interaction, exosomes are transferred from stromal to BrCa cells. RNA within exosomes, which are largely noncoding transcripts and transposable elements, stimulates the pattern recognition receptor RIG-I to activate STAT1-dependent antiviral signaling. In parallel, stromal cells also activate NOTCH3 on BrCa cells. The paracrine antiviral and juxtacrine NOTCH3 pathways converge as STAT1 facilitates transcriptional responses to NOTCH3 and expands therapy-resistant tumor-initiating cells. Primary human and/or mouse BrCa analysis support the role of antiviral/NOTCH3 pathways in NOTCH signaling and stroma-mediated resistance, which is abrogated by combination therapy with gamma secretase inhibitors. Thus, stromal cells orchestrate an intricate crosstalk with BrCa cells by utilizing exosomes to instigate antiviral signaling. This expands BrCa subpopulations adept at resisting therapy and reinitiating tumor growth.


Subject(s)
Breast Neoplasms/drug therapy , Breast Neoplasms/radiotherapy , Exosomes/metabolism , Paracrine Communication , Stromal Cells/metabolism , Animals , Breast Neoplasms/metabolism , Cell Line, Tumor , Computer Simulation , Drug Resistance, Neoplasm , Female , Humans , Interferons/metabolism , Mice, Nude , Radiation Tolerance , Receptors, Notch/metabolism , STAT1 Transcription Factor/metabolism , Signal Transduction , rab GTP-Binding Proteins/metabolism
9.
Nat Biotechnol ; 32(10): 1019-25, 2014 Oct.
Article in English | MEDLINE | ID: mdl-25129690

ABSTRACT

Despite developments in targeted gene sequencing and whole-genome analysis techniques, the robust detection of all genetic variation, including structural variants, in and around genes of interest and in an allele-specific manner remains a challenge. Here we present targeted locus amplification (TLA), a strategy to selectively amplify and sequence entire genes on the basis of the crosslinking of physically proximal sequences. We show that, unlike other targeted re-sequencing methods, TLA works without detailed prior locus information, as one or a few primer pairs are sufficient for sequencing tens to hundreds of kilobases of surrounding DNA. This enables robust detection of single nucleotide variants, structural variants and gene fusions in clinically relevant genes, including BRCA1 and BRCA2, and enables haplotyping. We show that TLA can also be used to uncover insertion sites and sequences of integrated transgenes and viruses. TLA therefore promises to be a useful method in genetic research and diagnostics when comprehensive or allele-specific genetic information is needed.


Subject(s)
Genomics/methods , Haplotypes/genetics , Models, Genetic , Nucleic Acid Amplification Techniques/methods , Sequence Analysis, DNA/methods , Gene Fusion/genetics , Genes, BRCA1 , Genes, BRCA2 , Genetic Loci/genetics , Humans , Neoplasms/genetics , Polymorphism, Single Nucleotide/genetics
10.
Clin Cancer Res ; 20(18): 4816-26, 2014 Sep 15.
Article in English | MEDLINE | ID: mdl-24963051

ABSTRACT

PURPOSE: Poly(ADP-ribose) polymerase (PARP) inhibitors are promising targeted treatment options for hereditary breast tumors with a homologous recombination (HR) deficiency caused by BRCA1 or BRCA2 mutations. However, the functional consequence of BRCA gene mutations is not always known and tumors can be HR deficient for other reasons than BRCA gene mutations. Therefore, we aimed to develop a functional test to determine HR activity in tumor samples to facilitate selection of patients eligible for PARP inhibitor treatment. EXPERIMENTAL DESIGN: We obtained 54 fresh primary breast tumor samples from patients undergoing surgery. We determined their HR capacity by studying the formation of ionizing radiation induced foci (IRIF) of the HR protein RAD51 after ex vivo irradiation of these organotypic breast tumor samples. Tumors showing impaired RAD51 IRIF formation were subjected to genetic and epigenetic analysis. RESULTS: Five of 45 primary breast tumors with sufficient numbers of proliferating tumor cells were RAD51 IRIF formation deficient (11%, 95% CI, 5%-24%). This HR defect was significantly associated with triple-negative breast cancer (OR, 57; 95% CI, 3.9-825; P = 0.003). Two of five HR-deficient tumors were not caused by mutations in the BRCA genes, but by BRCA1 promoter hypermethylation. CONCLUSION: The functional RAD51 IRIF assay faithfully identifies HR-deficient tumors and has clear advantages over gene sequencing. It is a relatively easy assay that can be performed on biopsy material, making it a powerful tool to select patients with an HR-deficient cancer for PARP inhibitor treatment in the clinic.


Subject(s)
Biological Assay/methods , Breast Neoplasms/drug therapy , Breast Neoplasms/genetics , Homologous Recombination/radiation effects , Rad51 Recombinase/radiation effects , Animals , Antineoplastic Agents/pharmacology , Enzyme Inhibitors/pharmacology , Female , Fluorescent Antibody Technique , Genes, BRCA1 , Genes, BRCA2 , Humans , Mice , Poly(ADP-ribose) Polymerase Inhibitors , Xenograft Model Antitumor Assays
11.
Blood ; 115(7): 1385-93, 2010 Feb 18.
Article in English | MEDLINE | ID: mdl-20008789

ABSTRACT

The adapter protein Slp65 is a key component of the precursor-B (pre-B) cell receptor. Slp65-deficient mice spontaneously develop pre-B cell leukemia, but the mechanism by which Slp65(-/-) pre-B cells become malignant is unknown. Loss of Btk, a Tec-family kinase that cooperates with Slp65 as a tumor suppressor, synergizes with deregulation of the c-Myc oncogene during lymphoma formation. Here, we report that the presence of the immunoglobulin heavy chain transgene V(H)81X prevented tumor development in Btk(-/-)Slp65(-/-) mice. This finding paralleled the reported effect of a human immunoglobulin heavy chain transgene on lymphoma development in Emu-myc mice, expressing transgenic c-Myc. Because activation of c-Myc strongly selects for spontaneous inactivation of the p19(Arf)-Mdm2-p53 tumor suppressor pathway, we investigated whether disruption of this pathway is a common alteration in Slp65(-/-) pre-B cell tumors. We found that combined loss of Slp65 and p53 in mice transformed pre-B cells very efficiently. Aberrations in p19(Arf), Mdm2, or p53 expression were found in all Slp65(-/-) (n = 17) and Btk(-/-)Slp65(-/-) (n = 32) pre-B cell leukemias analyzed. In addition, 9 of 10 p53(-/-)Slp65(-/-) pre-B cell leukemias manifested significant Mdm2 protein expression. These data indicate that malignant transformation of Slp65(-/-) pre-B cells involves disruption of the p19(Arf)-Mdm2-p53 tumor suppressor pathway.


Subject(s)
Adaptor Proteins, Signal Transducing/genetics , Cell Transformation, Neoplastic/metabolism , Cyclin-Dependent Kinase Inhibitor p16/metabolism , Precursor B-Cell Lymphoblastic Leukemia-Lymphoma/physiopathology , Proto-Oncogene Proteins c-mdm2/metabolism , Tumor Suppressor Protein p53/metabolism , Adaptor Proteins, Signal Transducing/metabolism , Agammaglobulinaemia Tyrosine Kinase , Animals , Cell Survival/physiology , Chromosomes, Mammalian , Cytidine Deaminase/metabolism , Immunoglobulin Heavy Chains/genetics , Immunoglobulin Variable Region/genetics , Mice , Mice, Inbred BALB C , Mice, Inbred C57BL , Mice, Transgenic , Precursor B-Cell Lymphoblastic Leukemia-Lymphoma/metabolism , Precursor B-Cell Lymphoblastic Leukemia-Lymphoma/pathology , Precursor Cells, B-Lymphoid/pathology , Precursor Cells, B-Lymphoid/physiology , Protein-Tyrosine Kinases/genetics , Protein-Tyrosine Kinases/metabolism , Transgenes/physiology , Tumor Suppressor Protein p53/genetics
12.
Blood ; 114(1): 119-27, 2009 Jul 02.
Article in English | MEDLINE | ID: mdl-19332766

ABSTRACT

The simian virus 40 (SV40) T antigen is a potent oncogene able to transform many cell types and has been implicated in leukemia and lymphoma. In this report, we have achieved sporadic SV40 T-antigen expression in mature B cells in mice, by insertion of a SV40 T antigen gene in opposite transcriptional orientation in the immunoglobulin (Ig) heavy (H) chain locus between the D and J(H) segments. SV40 T-antigen expression appeared to result from retention of the targeted germline allele and concomitant antisense transcription of SV40 large T in mature B cells, leading to chronic lymphocytic leukemia (CLL). Although B-cell development was unperturbed in young mice, aging mice showed accumulation of a monoclonal B-cell population in which the targeted IgH allele was in germline configuration and the wild-type IgH allele had a productive V(D)J recombination. These leukemic B cells were IgD(low)CD5(+) and manifested nonrandom usage of V, D, and J segments. V(H) regions were either unmutated, with preferential usage of the VH11 family, or manifested extensive somatic hypermutation. Our findings provide an animal model for B-CLL and show that pathways activated by SV40 T antigen play important roles in the pathogenesis of B-CLL.


Subject(s)
Antigens, Polyomavirus Transforming/genetics , Leukemia, Lymphocytic, Chronic, B-Cell/genetics , Leukemia, Lymphocytic, Chronic, B-Cell/virology , Simian virus 40/genetics , Simian virus 40/pathogenicity , Alleles , Animals , B-Lymphocytes/immunology , B-Lymphocytes/virology , Disease Models, Animal , Gene Expression , Heterozygote , Humans , Immunoglobulin Heavy Chains/genetics , Leukemia, Experimental/genetics , Leukemia, Experimental/immunology , Leukemia, Experimental/virology , Leukemia, Lymphocytic, Chronic, B-Cell/immunology , Mice , Mice, Inbred C57BL , Mice, Knockout , Mice, Transgenic , Simian virus 40/immunology , Somatic Hypermutation, Immunoglobulin , Tumor Suppressor Protein p53/deficiency , Tumor Suppressor Protein p53/genetics
13.
Clin Oral Implants Res ; 14(5): 569-77, 2003 Oct.
Article in English | MEDLINE | ID: mdl-12969360

ABSTRACT

The aim of this study was to determine the cell characteristics that regulate implant osseointegration. The heterogeneity of bone marrow stromal cells obtained from 11 donors was assessed by measuring the expression of a large panel of adhesion molecules. Large differences in expression of adhesion molecules were detected depending on the culture conditions used. Cells cultured in fetal bovine serum induced the expression of different adhesion molecules from cells cultured in human serum. Donor-to-donor variation was determined by measuring the expression of adhesion molecules for stromal cells obtained from different donors that were processed identically. Fat adherent cells but also loose bone marrow cells showed large differences in expression of some but not all adhesion molecules. The flow cytometric data demonstrated large heterogeneity in expression of adhesion molecules, and this heterogeneity was influenced by culture conditions and varied from donor to donor. This demonstrates that the implant encounters different cell types, which could lead to different levels of integration. Surprisingly, in vitro only a subfraction of bone marrow stromal cells attached to titanium coated with ceramic hydroxyapatite. Adaptation of all cell types present in heterogeneous bone marrow to a coated surface is apparently not possible. Differential binding was not caused by aberrant staining of the stromal cells as the results were confirmed with bone marrow cells obtained from transgenic GFP mice. These results demonstrate that hydroxyapatite ceramics are selective in cell recruitment from the bone marrow, explaining the differences found in vivo for these coatings compared with titanium.


Subject(s)
Bone Marrow Cells/drug effects , Bone Marrow Cells/metabolism , Cell Adhesion Molecules/biosynthesis , Cell Adhesion/physiology , Coated Materials, Biocompatible/pharmacology , Durapatite/pharmacology , Animals , Cell Adhesion/drug effects , Cells, Cultured , Culture Media , Humans , Mice , Mice, Transgenic , Stromal Cells/drug effects , Stromal Cells/metabolism , Titanium
14.
Clin Oral Implants Res ; 14(4): 472-80, 2003 Aug.
Article in English | MEDLINE | ID: mdl-12869010

ABSTRACT

The aim of this study was to investigate the effect of calcium phosphate coating crystallinity and composition on the proliferation and differentiation of rat bone marrow (RBM) cells. Grit-blasted titanium substrates were provided with thin sputter-coated calcium phosphate (Ca-P) films of different composition. The Ca-P-coated substrates were used as-sputtered or were heat-treated. XRD measurements showed that the as-sputtered coatings had an amorphous structure, whereas the heat-treated substrates showed an amorphous-crystalline structure. RBM cells were cultured on these substrates and on noncoated titanium substrates. After specific culture times, the expression of osteogenic markers by the cells was studied. On the amorphous-crystalline coatings as well as on titanium substrates, RBM cells proliferated, expressed alkaline phosphatase and showed mineralization. More mineralization was found on the amorphous-crystalline coatings than on the titanium substrates. Some precipitation was also found on substrates that were incubated in complete culture medium without cells. This precipitate disappeared after prolonged incubation. Alkaline phosphatase expression differed on the various amorphous-crystalline Ca-P-coated substrates, but no difference was found in the mineralization on these substrates. The amorphous Ca-P coatings showed extensive dissolution and some signs of precipitation after longer culture periods. Proliferation and differentiation of RBM cells was not seen on the amorphous coatings, regardless of Ca-P composition. We conclude that amorphous-crystalline Ca-P coatings stimulate differentiation of RBM cells, with only limited differences between coatings of various composition. In contrast, Ca-P coatings with an amorphous structure inhibit the growth and differentiation of RBM cells. This effect was found on all amorphous substrates, regardless of Ca-P composition.


Subject(s)
Bone Marrow Cells/drug effects , Calcium Phosphates/chemistry , Coated Materials, Biocompatible/chemistry , Titanium/chemistry , Alkaline Phosphatase/analysis , Analysis of Variance , Animals , Biomarkers/analysis , Calcification, Physiologic/drug effects , Cell Culture Techniques , Cell Differentiation/drug effects , Cell Division/drug effects , Crystallography , Electron Probe Microanalysis , Hot Temperature , Male , Osteogenesis/drug effects , Rats , Rats, Wistar , Solubility , Surface Properties , Time Factors
SELECTION OF CITATIONS
SEARCH DETAIL
...