Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
Biotechnol Adv ; 30(5): 1089-99, 2012.
Article in English | MEDLINE | ID: mdl-21856400

ABSTRACT

Porous aluminum oxide (PAO) is a ceramic formed by an anodization process of pure aluminum that enables the controllable assembly of exceptionally dense and regular nanopores in a planar membrane. As a consequence, PAO has a high porosity, nanopores with high aspect ratio, biocompatibility and the potential for high sensitivity imaging and diverse surface modifications. These properties have made this unusual material attractive to a disparate set of applications. This review examines how the structure and properties of PAO connect with its present and potential uses within research and biotechnology. The role of PAO is covered in areas including microbiology, mammalian cell culture, sensitive detection methods, microarrays and other molecular assays, and in creating new nanostructures with further uses within biology.


Subject(s)
Aluminum Oxide/chemistry , Biotechnology/methods , Nanopores , Nanotechnology/methods , Animals , Cells, Cultured , Nanopores/ultrastructure , Surface Properties
2.
Langmuir ; 27(22): 13606-17, 2011 Nov 15.
Article in English | MEDLINE | ID: mdl-21962228

ABSTRACT

Porous anodic alumina (PAA) is a well-defined material that has found many applications. The range of applications toward sensing and recognition can be greatly expanded if the alumina surface is covalently modified with an organic monolayer. Here, we present a new method for the organic modification of PAA based on the reaction of terminal alkynes with the alumina surface. The reaction results in the the formation of a monolayer within several hours at 80 °C and is dependent on both oxygen and light. Characterization with X-ray photoelectron spectroscopy and infrared spectroscopy indicates formation of a well-defined monolayer in which the adsorbed species is an oxidation product of the 1-alkyne, namely, its α-hydroxy carboxylate. The obtained monolayers are fairly stable in water and at elevated temperatures, as was shown by monitoring the water contact angle. Modification with 1,15-hexadecadiyne resulted in a surface that has alkyne end groups available for further reaction, as was demonstrated by the subsequent reaction of N-(11-azido-3,6,9-trioxaundecyl)trifluoroacetamide with the modified surface. Biofunctionalization was explored by coupling 11-azidoundecyl lactoside to the surface and studying the subsequent adsorption of the lectin peanut agglutinin (PNA) and the yeast Candida albicans, respectively. Selective and reversible binding of PNA to the lactosylated surfaces was demonstrated. Moreover, PNA adsorption was higher on surfaces that exposed the ß-lactoside than on those that displayed the α anomer, which was attributed to surface-associated steric hindrance. Likewise, the lactosylated surfaces showed increased colonization of C. albicans compared to unmodified surfaces, presumably due to interactions involving the cell wall ß-glucan. Thus, this study provides a new modification method for PAA surfaces and shows that it can be used to induce selective adsorption of proteins and microorganisms.


Subject(s)
Alkynes/chemistry , Aluminum Oxide/chemistry , Electrodes , Adsorption , Candida albicans/isolation & purification , Magnetic Resonance Spectroscopy , Mass Spectrometry , Microscopy, Fluorescence , Mycobacterium tuberculosis/isolation & purification , Photoelectron Spectroscopy , Spectrophotometry, Infrared , X-Rays
3.
Chem Commun (Camb) ; 46(42): 8005-7, 2010 Nov 14.
Article in English | MEDLINE | ID: mdl-20871919

ABSTRACT

A method for the direct patterning of 1-alkynes onto hydrogen-terminated silicon is presented. It combines microcontact printing with illumination through the stamp, and results in the formation of an alkenyl monolayer. The formation of heterogeneous monolayers is demonstrated by subsequent backfilling.

4.
Small ; 6(17): 1918-26, 2010 Sep 06.
Article in English | MEDLINE | ID: mdl-20677184

ABSTRACT

The photothermal laser patterning of functional organic monolayers, prepared on oxide-free hydrogen-terminated silicon, and subsequent backfilling of the laser-written lines with a second organic monolayer that differs in its terminal functionality, is described. Since the thermal monolayer decomposition process is highly nonlinear in the applied laser power density, subwavelength patterning of the organic monolayers is feasible. After photothermal laser patterning of hexadecenyl monolayers, the lines freed up by the laser are backfilled with functional acid fluoride monolayers. Coupling of cysteamine to the acid fluoride groups and subsequent attachment of Au nanoparticles allows easy characterization of the functional lines by atomic force microscopy (AFM) and scanning electron microscopy (SEM). Depending on the laser power and writing speed, functional lines with widths between 1.1 µm and 250 nm can be created. In addition, trifluoroethyl-terminated (TFE) monolayers are also patterned. Subsequently, the decomposed lines are backfilled with a nonfunctional hexadecenyl monolayer, the TFE stripes are converted into thiol stripes, and then finally covered with Au nanoparticles. By reducing the lateral distance between the laser lines, Au-nanoparticle stripes with widths close to 100 nm are obtained. Finally, in view of the great potential of this type of monolayer in the field of biosensing, the ease of fabricating biofunctional patterns is demonstrated by covalent binding of fluorescently labeled oligo-DNA to acid-fluoride-backfilled laser lines, which--as shown by fluorescence microscopy--is accessible for hybridization.


Subject(s)
Lasers , Nanotechnology/methods , Silicon/chemistry , DNA/chemistry , Gold/chemistry , Metal Nanoparticles/chemistry , Microscopy, Electron, Scanning , Oligodeoxyribonucleotides/chemistry , Oxides/chemistry , Spectrometry, Fluorescence , Surface Properties
5.
Small ; 6(5): 642-50, 2010 Mar 08.
Article in English | MEDLINE | ID: mdl-20143349

ABSTRACT

This work describes a new route for patterning organic monolayers on oxide-free silicon by microcontact printing (microCP) on a preformed, reactive, acid-fluoride-terminated monolayer. This indirect printing approach is fast and easily preserves the oxide-free and well-defined monolayer-silicon interface, which is the most important property for potential applications in biosensing and molecular electronics. Water-contact-angle measurements, ellipsometry, attenuated total reflection infrared spectroscopy, and X-ray photoelectron spectroscopy (XPS) demonstrate the formation of the initial acid-fluoride-terminated monolayers without upside-down attachment. Subsequent printing for twenty seconds with an N-hexadecylamine-inked poly(dimethylsiloxane) stamp results in well-defined 5-microm N-hexadecylamide dots, as evidenced by atomic force microscopy and scanning electron microscopy. Printing with a flat stamp allows investigation of the efficiency of amide formation by microCP and water-contact-angle measurements, ellipsometry, and XPS reveal the quantitative conversion of the acid fluoride groups to the corresponding amide within twenty seconds. The absence of silicon oxide, even after immersion in water for 16 h, demonstrates that the oxide-free monolayer-silicon interface is easily preserved by this patterning route. Finally, it is shown by fluorescence microscopy that complex biomolecules, like functionalized oligo-DNA, can also be immobilized on the oxide-free silicon surface via microCP.


Subject(s)
Fluorides/chemistry , Oxides/chemistry , Silicon/chemistry , Amines/chemistry , DNA/chemistry , Hydrocarbons , Microscopy, Atomic Force , Microscopy, Fluorescence , Photoelectron Spectroscopy , Spectrophotometry, Infrared , Surface Properties
6.
Langmuir ; 25(19): 11592-7, 2009 Oct 06.
Article in English | MEDLINE | ID: mdl-19583192

ABSTRACT

The functionalization of optically transparent substrates is of importance, for example, in the field of biosensing. In this article, a new method for modification of silica surfaces is presented that is based on a photochemical reaction of terminal alkenes with the surface. This yields highly hydrophobic surfaces, which are thermally stable up to at least 400 degrees C. The formed monolayer provides chemical passivation of the underlying surface, according to studies showing successful blocking of platinum atomic layer deposition (ALD). The reaction is photochemically initiated, requiring light with a wavelength below 275 nm. X-ray photoelectron spectroscopy and infrared spectroscopy studies show that the alkenes initially bind to the surface hydroxyl groups in Markovnikov fashion. At prolonged reaction times (>5 h), however, oligomerization occurs, resulting in layer growth normal to the surface. The photochemical nature of the reaction enables the use of photolithography as a tool to constructively pattern silica surfaces. Atomic force microscopy shows that the features of the photomask are well transferred. The newly developed method can complement existing patterning methods on silica that are based on soft lithography.

7.
Langmuir ; 25(24): 13952-8, 2009 Dec 15.
Article in English | MEDLINE | ID: mdl-20560554

ABSTRACT

For the first time, a microchannel was photochemically patterned with a functional linker. This simple method was developed for the site-specific attachment of DNA via this linker onto silicon oxide surfaces (e.g., fused silica and borosilicate glass), both onto a flat surface and onto the inside of a fused silica microchannel. Sharp boundaries in the micrometer range between modified and unmodified zones were demonstrated by the attachment of fluorescently labeled DNA oligomers. Studies of repeated hybridization-dehybridization cycles revealed selective and reversible binding of cDNA strands at the explicit locations. On average, approximately 7 x 10(11) fluorescently labeled DNA molecules were hybridized per square centimeter. The modified surfaces were characterized with X-ray photoelectron spectroscopy, infrared microscopy, static contact angle measurements, confocal laser scanning microscopy, and fluorescence detection (to quantify the attachment of the fluorescently labeled DNA).


Subject(s)
DNA/chemistry , Microarray Analysis/instrumentation , Nucleic Acid Hybridization/genetics , Fluorescent Dyes , Glass , Photochemical Processes , Surface Properties
8.
Small ; 1(2): 242-53, 2005 Feb.
Article in English | MEDLINE | ID: mdl-17193439

ABSTRACT

Three compounds bearing multiple adamantyl guest moieties and a fluorescent dye have been synthesized for the supramolecular patterning of beta-cyclodextrin (CD) host monolayers on silicon oxide using microcontact printing and dip-pen nanolithography. Patterns created on monolayers on glass were viewed by laser scanning confocal microscopy. Semi-quantitative analysis of the patterns showed that with microcontact printing approximately a single monolayer of guest molecules is transferred. Exposure to different rinsing procedures showed the stability of the patterns to be governed by specific supramolecular multivalent interactions. Patterns of the guest molecules created at CD monolayers were stable towards thorough rinsing with water, whereas similar patterns created on poly(ethylene glycol) (PEG) reference monolayers were instantly removed. The patterns on CD monolayers displayed long-term stability when stored under N(2), whereas patterns at PEG monolayers faded within a few weeks due to the diffusion of fluorescent molecules across the surface. Assemblies at CD monolayers could be mostly removed by rinsing with a concentrated CD solution, demonstrating the reversibility of the methodology. Patterns consisting of different guest molecules were produced by microcontact printing of one guest molecule and specific adsorption of a second guest molecule from solution to non-contacted areas, giving well-defined alternating assemblies. Fluorescent features of sub-micrometer dimensions were written using supramolecular dip-pen nanolithography.


Subject(s)
Cyclodextrins/chemistry , Nanotechnology/methods , Silicon Dioxide/chemistry , Acrylonitrile/chemistry , Fluorescent Dyes/pharmacology , Ink , Lasers , Magnetic Resonance Spectroscopy , Methylene Chloride/chemistry , Microscopy, Confocal , Models, Chemical , Nanostructures/chemistry , Polyethylene Glycols/chemistry , Spectrophotometry/methods , beta-Cyclodextrins/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...