Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Phys Rev E Stat Nonlin Soft Matter Phys ; 77(4 Pt 2): 046312, 2008 Apr.
Article in English | MEDLINE | ID: mdl-18517737

ABSTRACT

We describe a scheme of molecular tagging velocimetry in air in which nitric oxide (NO) molecules are created out of O2 and N2 molecules in the focus of a strong laser beam. The NO molecules are visualized a while later by laser-induced fluorescence. The precision of the molecular tagging velocimetry of gas flows is affected by the gradual blurring of the written patterns through molecular diffusion. In the case of turbulent flows, molecular diffusion poses a fundamental limit on the resolution of the smallest scales in the flow. We study the diffusion of written patterns in detail for our tagging scheme which, at short (micros) delay times is slightly anomalous due to local heating by absorption of laser radiation. We show that our experiments agree with a simple convection-diffusion model that allows us to estimate the temperature rise upon writing. Molecular tagging can be a highly nonlinear process, which affects the art of writing. We find that our tagging scheme is (only) quadratic in the intensity of the writing laser.

2.
Appl Opt ; 43(30): 5669-81, 2004 Oct 20.
Article in English | MEDLINE | ID: mdl-15534999

ABSTRACT

Laser-based optical diagnostics, such as planar laser-induced fluorescence and, especially, Raman imaging, often require selective spectral filtering. We advocate the use of an imaging spectrograph with a broad entrance slit as a spectral filter for two-dimensional imaging. A spectrograph in this mode of operation produces output that is a convolution of the spatial and spectral information that is present in the incident light. We describe an analytical deconvolution procedure, based on Bayesian statistics, that retrieves the spatial information while it avoids excessive noise blowup. The method permits direct imaging through a spectrograph, even under broadband illumination. We introduce the formalism and discuss the underlying assumptions. The performance of the procedure is demonstrated on an artificial but pathological example. In a companion paper [Appl. Opt. 43, 5682-5690 (2004)] the method is applied to the practical case of fuel equivalence ratio Raman imaging in a combustible methane-air mixture.

3.
Appl Opt ; 43(30): 5682-90, 2004 Oct 20.
Article in English | MEDLINE | ID: mdl-15535000

ABSTRACT

The Bayesian deconvolution algorithm described in a preceding paper [Appl. Opt. 43, 5669-5681 (2004)] is applied to measurement of the two-dimensional stoichiometry field in a combustible methane-air mixture by Raman imaging through a spectrograph. Stoichiometry (fuel equivalence ratio) is derived from the number density fields of methane and nitrogen, with a signal-to-noise ratio of approximately 10 in a 600-laser-shot average. Prospects for single-shot Raman imaging are discussed.

SELECTION OF CITATIONS
SEARCH DETAIL
...