Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Arch Toxicol ; 82(5): 333-8, 2008 May.
Article in English | MEDLINE | ID: mdl-17992515

ABSTRACT

A concept relating the lipophilicity of chemicals with their genotoxicity on a chromosomal level had been generated by Schultz and Onfelt (Chem Biol Interact 126:97-123, 2000). It was shown that aneuploidy in Chinese hamster V79 cells was elicited by lipophilic chemicals at concentrations related to their hydrophobicity (log P), whereas toxicants with a specific mode of action acted at concentrations consistently lower than predicted based on log P. We have now combined available data sets on aneuploidy/micronucleus formation with procedures used in QSAR modelling, in order to find new molecular descriptors for modelling non-specific chromosomal genotoxicity, and to optimise combinations thereof. Molecular structures of 26 chemicals, including steroids, were converted into single 3D models using Corina (version 3.20), and 11 descriptors of molecular properties were calculated. The data of 16 compounds assigned to a non-specific mode of action were imported into the QSAR module of the software package Cerius(2) (version 4.10). Applying genetic function approximation (GFA), linear equations were set up relating molecular descriptors with experimental concentrations at which doubling of micronuclei occurred in V79 cells (exp -log C). The number of variables (molecular descriptors) was limited to a maximum of three, and linear and quadratic terms were allowed. Based on the descriptions provided by the GFA procedure, log P was the most suitable single property to describe non-specific genotoxicity [r (2 ) = 0.88], confirming the original concept of Schultz and Onfelt. Using more descriptors (up to three in combination) resulted in an optimization of correlations up to r (2 )= 0.97. Such optimal correlation coefficients were obtained by combinations (a) of the numbers of hydrogen bond acceptors, the polar surface and total surface areas of molecules on one hand, and by (b) the dipole moment, polar surface and total surface descriptors on the other hand. In essence, the relation of polar surface to the total molecular surface appears pivotal to determine the non-specific chromosomal genotoxicity of lipophilic compounds.


Subject(s)
Hydrophobic and Hydrophilic Interactions , Models, Chemical , Mutagens/chemistry , Mutagens/toxicity , Animals , Cell Line , Chromosomes, Mammalian/drug effects , Cricetinae , Cricetulus , Micronucleus Tests , Molecular Structure , Quantitative Structure-Activity Relationship
2.
Mutat Res ; 628(2): 67-75, 2007 Apr 02.
Article in English | MEDLINE | ID: mdl-17292661

ABSTRACT

Tests for chromosomal damage are indispensable in the genotoxicity testing battery. Thus, positive results of clastogenicity or aneugenicity tests are of key relevance in safety assessment and product development. Schultz and Onfelt [N. Schultz, A. Onfelt, Sensitivity of cytokinesis to hydrophobic interactions. Chemical induction of bi- and multi-nucleated cells, Chem. Biol. Interact. 126 (2000) 97-123.] have studied the chemical induction of bi- and multi-nucleated cells in Chinese hamster V79 cells and compared non-specific agents with inducers acting through a known specific mechanism. They separated compounds with a specific action from those with a non-specific action based on lipophilicity, following a theory of hydrophobic interactions with processes of cytokinesis. It appeared possible to broaden the original database of this concept to include aneugenic as well as clastogenic compounds studied in the micronucleus (MN) test. The datasets used for this purpose were (A) the original dataset of Schultz and Onfelt [N. Schultz, A. Onfelt, Sensitivity of cytokinesis to hydrophobic interactions. Chemical induction of bi- and multi-nucleated cells, Chem. Biol. Interact. 126 (2000) 97-123.], and two sets (B, C) of our own data from studies in V79 cells in vitro. As the particular endpoints used were different (A: counts of bi- and multi-nucleated cells, B/C: micronucleus counts) the coherence of the experimental data sets was validated by including compounds belonging to both collections. Data set B included compounds with a specific effect on the mitotic spindle (nitrobenzene and benzonitrile) and data set C included the phytoestrogens genistein and daidzein, as well as a number of hormonal steroids with unknown mode of action. Taking all three data sets (A, B, C) together, the 33 compounds investigated covered a total lipophilicity range of logP between -0.51 (diamide) and 5.65 (17alpha-propylmesterolone). In order to separate statistical outliers (with a specific mode of action to be likely) from the large cluster of compounds with non-specific genotoxicity related to hydrophobic interactions, the method of robust regression was applied. It appeared that all compounds with a specific mode of action were in fact outliers of the lipophilicity rule. Genistein, a weak clastogen causing chromosomal aberrations and being discussed to induce topoisomerase-2 mediated DNA breaks, came close to the statistical borderline between compounds with specific and non-specific chromosomal genotoxicity. A general procedure is proposed, applicable in chemical product development, to screen specific and non-specific modes of action.


Subject(s)
Hydrophobic and Hydrophilic Interactions , Mutagenicity Tests/standards , Algorithms , Animals , Cells, Cultured , Cricetinae , Cricetulus , DNA Damage , Databases as Topic , Micronucleus Tests , Sensitivity and Specificity
SELECTION OF CITATIONS
SEARCH DETAIL
...