Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 13 de 13
Filter
Add more filters










Publication year range
1.
Heredity (Edinb) ; 108(3): 341-6, 2012 Mar.
Article in English | MEDLINE | ID: mdl-21934703

ABSTRACT

Wolbachia are endosymbiotic bacteria known to manipulate the reproduction of their hosts. Some populations of the parasitoid wasp Asobara japonica are infected with Wolbachia and reproduce parthenogenetically, while other populations are not infected and reproduce sexually. Wolbachia-infected A. japonica females regularly produce small numbers of male offspring. Because all females in the field are infected and infected females are not capable of sexual reproduction, male production seems to be maladaptive. We investigated why these females nevertheless produce males. We tested three hypotheses: high rearing temperatures could result in higher offspring sex ratios (more males), low Wolbachia titer of the mother could lead to higher offspring sex ratios and/or the Wolbachia infection is of relatively recent origin and not enough time has passed to allow complete coadaptation between Wolbachia and host. In all, 33% of the Wolbachia-infected females produced males and 56% of these males were also infected with Wolbachia. Neither offspring sex ratio nor male infection frequency was significantly affected by rearing temperature or Wolbachia concentration of the mother. The mitochondrial DNA sequence of one of the uninfected populations was identical to that of two of the infected populations. Therefore, the initial Wolbachia infection of A. japonica must have occurred recently. Mitochondrial sequence variation among the infected populations suggests that the spread of Wolbachia through the host populations involved horizontal transmission. We conclude that the occasional male production by Wolbachia-infected females is most likely a maladaptive side effect of incomplete coevolution between symbiont and host in this relatively young infection.


Subject(s)
Hymenoptera/genetics , Hymenoptera/microbiology , Parthenogenesis/genetics , Wolbachia/physiology , Animals , DNA, Mitochondrial , Female , Haplotypes , Host-Pathogen Interactions , Male , Molecular Sequence Data , Reproduction/genetics , Sex Ratio , Symbiosis , Temperature , Wolbachia/genetics
2.
Bull Entomol Res ; 100(5): 543-9, 2010 Oct.
Article in English | MEDLINE | ID: mdl-20102660

ABSTRACT

Because insects are ectotherms, their physiology, behaviour and fitness are influenced by the ambient temperature. Any changes in environmental temperatures may impact the fitness and life history traits of insects and, thus, affect population dynamics. Here, we experimentally tested the impact of heat shock on the fitness and life history traits of adults of the aphid parasitoid Aphidius avenae and on the later repercussions for their progeny. Our results show that short exposure (1 h) to an elevated temperature (36 degrees C), which is frequently experienced by parasitoids during the summer, resulted in high mortality rates in a parasitoid population and strongly affected the fitness of survivors by drastically reducing reproductive output and triggering a sex-dependent effect on lifespan. Heat stress resulted in greater longevity in surviving females and in shorter longevity in surviving males in comparison with untreated individuals. Viability and the developmental rates of progeny were also affected in a sex-dependent manner. These results underline the ecological importance of the thermal stress response of parasitoid species, not only for survival, but also for maintaining reproductive activities.


Subject(s)
Heat-Shock Response , Hot Temperature , Wasps/physiology , Animals , Aphids/parasitology , Female , Longevity , Male , Reproduction , Sex Factors , Sex Ratio , Sexual Behavior, Animal , Wasps/growth & development
3.
J Evol Biol ; 21(2): 480-91, 2008 Mar.
Article in English | MEDLINE | ID: mdl-18205780

ABSTRACT

Several hundred species of haplochromine cichlid fish have evolved rapidly in Lake Victoria. Divergent sexual and ecological selection probably played an important role in this radiation, generating divergent mating preferences and preference-trait covariance. However, the segregation of hybrid inviability or infertility genes could also potentially generate preference-trait covariance, and the mechanisms that cause the evolution of divergent mating preferences have not been investigated in detail in any cichlid species pair. We investigated intrinsic fitness of hybrids between two sister species in the genus Pundamilia, one of the most species-rich genera of Lake Victoria cichlids. Fitness-related traits were measured in nonhybrid offspring of both species, and in the first and second hybrid generations. There were no differences in fecundity, fertility, sex ratio or growth rates either between the sister species or between these and their hybrids. By contrast, there was a difference in offspring survival between the two sister species. Offspring survival was dependent only on the species of the mother, regardless of whether the cross was conspecific or heterospecific. Further, eggs tended to be larger in the hybrids than in one of the parental species. Hence, hybrids suffered no intrinsic fitness reduction relative to nonhybrids. Our data suggest that intrinsic hybrid incompatibilities are unlikely to have caused speciation in Pundamilia, nor to maintain species boundaries in this system.


Subject(s)
Cichlids/genetics , Hybridization, Genetic , Oviparity/genetics , Selection, Genetic , Animals , Cichlids/anatomy & histology , Cichlids/growth & development , Female , Fertility/genetics , Male , Ovum/cytology , Sex Ratio , Survival Analysis
4.
J Evol Biol ; 20(3): 913-20, 2007 May.
Article in English | MEDLINE | ID: mdl-17465902

ABSTRACT

We simulated a meta-population with random dispersal among demes but local mating within demes to investigate conditions under which a dominant female-determining gene W, with no individual selection advantage, can invade and become fixed in females, changing the population from male to female heterogamety. Starting with one mutant W in a single deme, the interaction of sex ratio selection and random genetic drift causes W to be fixed among females more often than a comparable neutral mutation with no influence on sex determination, even when YY males have slightly reduced viability. Meta-population structure and interdeme selection can also favour the fixation of W. The reverse transition from female to male heterogamety can also occur with higher probability than for a comparable neutral mutation. These results help to explain the involvement of sex-determining genes in the evolution of sex chromosomes and in sexual selection and speciation.


Subject(s)
Models, Genetic , Sex Determination Processes , Animals , Evolution, Molecular , Female , Genetic Drift , Genetic Speciation , Genotype , Male , Mutation , Population Density , Sex Chromosomes , Sex Ratio
5.
J Evol Biol ; 18(4): 1019-28, 2005 Jul.
Article in English | MEDLINE | ID: mdl-16033575

ABSTRACT

Females infected with parthenogenesis-inducing Wolbachia bacteria can be cured from their infection by antibiotic treatment, resulting in male production. In most cases, however, these males are either sexually not fully functional, or infected females have lost the ability to reproduce sexually. We studied the decay of sexual function in males and females of the parasitoid Leptopilina clavipes. In western Europe, infected and uninfected populations occur allopatrically, allowing for an investigation of both male and female sexual function. This was made by comparing females and males induced from different parthenogenetic populations with those from naturally occurring uninfected populations. Our results indicate that although males show a decay of sexual function, they are still able to fertilize uninfected females. Infected females, however, do not fertilize their eggs after mating with males from uninfected populations. The absence of genomic incompatibilities suggests that these effects are due to the difference in mode of reproduction.


Subject(s)
Alleles , Parthenogenesis/physiology , Sexual Behavior, Animal/physiology , Wasps/microbiology , Wasps/physiology , Wolbachia , Animals , Crosses, Genetic , Europe , Female , Fertility/physiology , Male , Polymorphism, Restriction Fragment Length , Rifampin , Sex Ratio , Spermatozoa/physiology , Wasps/genetics
6.
Mech Ageing Dev ; 126(3): 407-16, 2005 Mar.
Article in English | MEDLINE | ID: mdl-15664627

ABSTRACT

There is evidence that longevity and starvation resistance are determined by a common genetic mechanism. Starvation resistance in Drosophila strongly correlates with both fat content and longevity, and is affected by density during rearing. In this study, we examine how three species, Drosophila melanogaster, Drosophila ananassae and Drosophila willistoni, respond to three larval density treatments. Starvation resistance after adult eclosion, and after 2 days of feeding, and longevity were examined in each sex. D. willistoni reacted differently to larval density than the other two species. This species showed an effect of density on longevity whilst D. ananassae and D. melanogaster showed no such effects. The results also indicate that starvation resistance is not solely determined by fat content. Resistance to starvation at two time points after eclosion differed among species. This may reflect differences in resource acquisition and allocation, and we discuss our findings in relation to how selection may operate in the different species.


Subject(s)
Drosophila/physiology , Longevity/physiology , Starvation/metabolism , Animals , Fats/metabolism , Larva/physiology , Reproduction/physiology , Sex Factors , Species Specificity
7.
Genetica ; 112-113: 435-43, 2001.
Article in English | MEDLINE | ID: mdl-11838780

ABSTRACT

Mechanisms of speciation in cichlid fish were investigated by analyzing population genetic models of sexual selection on sex-determining genes associated with color polymorphisms. The models are based on a combination of laboratory experiments and field observations on the ecology, male and female mating behavior, and inheritance of sex-determination and color polymorphisms. The models explain why sex-reversal genes that change males into females tend to be X-linked and associated with novel colors, using the hypothesis of restricted recombination on the sex chromosomes, as suggested by previous theory on the evolution of recombination. The models reveal multiple pathways for rapid sympatric speciation through the origin of novel color morphs with strong assortative mating that incorporate both sex-reversal and suppressor genes. Despite the lack of geographic isolation or ecological differentiation, the new species coexists with the ancestral species either temporarily or indefinitely. These results may help to explain different patterns and rates of speciation among groups of cichlids, in particular the explosive diversification of rock-dwelling haplochromine cichlids.


Subject(s)
Biological Evolution , Cichlids/genetics , Disorders of Sex Development , Animals , Color , Female , Genetic Linkage , Male , Models, Genetic , Selection, Genetic , Sex Determination Processes , Sexual Behavior, Animal , X Chromosome
8.
Heredity (Edinb) ; 84 ( Pt 1): 29-36, 2000 Jan.
Article in English | MEDLINE | ID: mdl-10692008

ABSTRACT

In species with single-locus complementary sex determination (sl-CSD), sex is determined by multiple alleles at a single locus. In the haplodiploid Hymenoptera, sl-CSD results in females, if individuals are heterozygous at the sex locus, and in males, if individuals are hemizygous (haploid males) or homozygous (diploid males). Several hymenopteran species have been shown to have sl-CSD, but in several others sl-CSD is absent and the phylogenetic distribution remains unclear. In the family Braconidae, all four species tested so far were shown to possess sl-CSD. In this study, inbreeding experiments were used to test for the presence of sl-CSD in two species belonging to a subfamily of the Braconidae, Asobara tabida and Alysia manducator (Alysiinae). In both species inbreeding experiments showed no difference in brood size or sex ratio compared to the (outbred) control group. Furthermore, the sex ratios found in the inbreeding treatment differed significantly from the sex ratios expected under sl-CSD. Therefore, we conclude that sl-CSD is absent in these species. This study is the first to show the lack of sl-CSD in species of the Braconidae family and that hymenopteran sex-determining mechanisms can vary, even within a family.


Subject(s)
Sex Determination Processes , Wasps/genetics , Alleles , Animals , Crosses, Genetic , Diploidy , Female , Inbreeding , Male , Sex Determination Analysis , Sex Ratio , Temperature , Wasps/physiology
9.
Parasitology ; 116 Suppl: S29-45, 1998.
Article in English | MEDLINE | ID: mdl-9695108

ABSTRACT

Host-parasitoid interactions are abundant in nature and offer great scope for the study of coevolution. A particularly fertile area is the interaction between internal feeding parasitoids and their hosts. Hosts have evolved a variety of means of combating parasitoids, in particular cellular encapsulation, while parasitoids have evolved a wide range of countermeasures. Studies of the evolution of host resistance and parasitoid virulence are reviewed, with an emphasis on work involving Drosophila and its parasitoids. Genetic variation in both traits has been demonstrated using isofemale line and artificial selection techniques. Recent studies have investigated the fitness costs of maintaining the ability to resist parasitoids, the comparative fitness of flies that have successfully defended themselves against parasitoids, and the degree to which resistance and virulence act against one or more species of host or parasitoid. A number of studies have examined geographical patterns, and sought to look for local adaptation; or have compared the traits across a range of species. Finally, the physiological and genetic basis of change in resistance and virulence is being investigated. While concentrating on Drosophila, the limited amount of work on different systems is reviewed, and other possible areas of coevolution in host-parasitoid interactions are briefly discussed.


Subject(s)
Biological Evolution , Host-Parasite Interactions , Insecta/parasitology , Animals , Drosophila/genetics , Drosophila/parasitology , Insecta/genetics , Virulence
11.
13.
Oecologia ; 67(4): 572-576, 1985 Dec.
Article in English | MEDLINE | ID: mdl-28311043

ABSTRACT

Host discrimination, i.e. the ability to distinguish unparasitized hosts from parasitized ones, and to reject the latter for egg laying is present in many parasitic wasp species. This property is classically considered as an example of contest competition, and is supposed to have a number of functions. However, different species do not react to each other's marks and lay eggs in hosts parasitized by the other species. Apparently the marks used for recognition are specific.Multiparasitization is the best strategy when hosts are scarce and the egg supplies of the parasitoids are not limited. Interspecific host discrimination is not an ESS.Superparasitization within one species would have selective advantage if the number of unparasitized hosts is small and the wasp has a reasonable chance to lay her egg in a host that is not parasitized by herself, and if the chance for her offspring to survive the competitive battle with the first parasitoid larva is not too small. This is shown to be the case.However, marks are not individual and wasps cannot distinguish hosts parasitized by themselves from those parasitized by others. The hypothesis is tested that the egg laying strategy (i.e. the decision to superparasitize) of wasps is dependent on the number of conspecifics that is searching simultaneously for hosts, since this determines the chance that a parasitized host encountered by a wasp is parasitized by herself.It is shown that host discrimination cannot be regarded as a case of contest competition. Other aspects of superparasitization, related to interference and population regulation, sex allocation and encapsulation are briefly discussed.

SELECTION OF CITATIONS
SEARCH DETAIL
...